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Abstract 

We tbrmulate a mathematical model tbr the optimal control of the exchange rate under 
uncertainty. The control consists of a combination of: 
I. (continuous) stochastic control and 
2. an impulse control. 

We give general sufficient conditions for its solution. The results are applied to the 
following situation: 

Suppose that a government has two means of influencing the foreign exchange rate of its 
own currency: 
1. At all times t the government can choose the domestic interest rate r,. 
2. At selected times the government can intervene in the tbreign exchange market by 

buying or selling large amounts of tbreign currency. 
We assume that the exchange rate is stochastic and that there are given costs involved in 

these two actions. It is also costly to have an exchange rate which deviates too much from a 
given central parity m. How does the government apply its two means of influence in order 
to keep the exchange rate as stable as possible with minimal expected costs? 

We formulate this problem mathematically as a combined stochastic control ( l )  and 
impulse control (2) problem, and we discuss the solution in a specific example. © t998 
Elsevier Science S.A. 
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1. Introduction 

The research on target zone exchange rate regimes has progressed rapidly over 
the last few years. With a target zone regime the exchange rate is allowed to move 
within a specified band, and it is then customary to assume that the central bank 
intervenes to prevent the exchange rate from moving outside the band. Krugman 
(1987) introduced the standard target zone model. Here the exchange rate depends 
on both 'fundamentals' and on expectations about its future values. See Svensson 
(1992a,Bertola (1994) and Garber and Svensson (1996) for a review of the 
relevant later literature. 

This paper contributes to this literature by deriving the optimal intervention 
policy by the central bank in order to stabilize the exchange rate within its band. 
This policy comprises both interventions in the foreign exchange market, at 
selected times only, and a continuous control of the domestic interest rate level. 
We should, however, point out that our analysis below only depends on one of 
these instruments being used discretely, and the other continuously. Thus instead 
assuming interventions as occurring continuously, while changes in the interest 
rate occurring more periodically, is also possible to consider in our mathematical 
model. 

We set up a model of optimal intervention policy for the central bank m a sir ..ti 
economy to find the optimal deviation of the exchange rate from the central parity 
of its band. We then derive an optimal interest rate differential between domestic 
and foreign interest rates (although the foreign interest rate level is taken as given), 
and the optimal time and amount of central-bank intervention in the foreign 
exchange market. The analysis ignores the issue of whether interventions are 
sterilized or unsterilized. Note also that we assume that speculators do not have 
information which allows them to infer the size or the timing of jumps in the 
exchange rate. This implies that the central bank never announces the amount of 
intervention, and speculators cannot anticipate risk-free profits at an infinite rate 
nor can they compete away possible arbitrage profits by exactly counteracting the 
intervention amount. 

Our mathematical model consists of a combination of stochastic control and 
impulse control and we give sufficient conditions that a given function is the 
minimal expected cost function for the central bank and that the corresponding 
strategy is optimal. The model is illustrated by a specific example. The mathemati- 
cal model presented has, however, greater generality, and can be app|ied to other 
economics problems that involve the combination of stochastic control and 
impulse control. 

2. A brief review of the target-zone literature 

The initial Krugman (1987, 1991) model was based on a number of crucial 
assumptions. One is that the exchange rate target zone is perfectly credible, in the 
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sense that market agents believe that the lower and upper edges of the band will 
remain fixed forever. Another is that the target zone is defended with interventions 
at its edges, and no interventions take place when the exchange rate is strictly 
inside the band (i.e. no intramarginal interventions). Following Krugmaa's 
methodology, Svensson (1991) finds a deterministic, non-linear inverse relation- 
ship between the exchange rate deviations from parity and interest rate differen- 
tials, which is flatter and less-non-linear for longer maturities, and which follows 
fiom the exchange rate band being credible. Most empirical evidence has, 
however, put into question the assumptions and conclusions of these models. 

A number of questions remains unanswered, particularly following the last 
European exchange rate crisis in the fall of 1992. Among these are the issue of the 
optimal policy to maintain the currency band, and the optimal width of the 
currency band once adopted. The current paper deals with these two questions. 
The literature contains a few analyses related to ours. Svensson (1992b) studies a 
model of optimal intervention policy in a small open economy, where the cenmd 
bank minimizes a weighted sum of interest rate and exchange rate variability using 
as its only instrument foreign exchange interventions. He assumes a credible band, 
with a negative trade-off between interest rate smoothing and exchange rate 
variability. He then finds that there exists an optimal negative trade-off between 
exchange rate and interest rate variability. Miller and Zhang (1994) attempt to 
derive an optimal target zone, and assume that the costs of intervening in the 
foreign exchange rate market are proportional to the size of the intervention (as in 
Avesani, 1990). They then find that the optimal policy is to stay within a given 
target zone, using marginal and infinitesimal interventions at the boundaries of the 
target zone in order to obtain a reflecting barrier. 

In contrast with these papers, in our model the cost of each intervention is 
greater than a fixed, positive minimum, no matter how small the intervention. This 
leads to an optimal policy with discre te  intervention episodes. 

The model in the literature that most closely resembles ours is probably 
Jeanblanc-Picqu6 (1993). She uses the mathematical theory of impulse control to 
show that there exists an optimal intervention policy (impulse control) which, 
under given intervention costs, forces the given (constant-drift Brownian motion) 
diffusion for the exchange rate to stay within a band [a, b]. The optimal policy is 
shown to be the following: When the process is in (a, b), no interventions should 
be made. When the process reaches the value a or b, respectively, an intervention 
should be made which makes the exchange rate jump inside its band to points a 
or fl, respectively, where a < t~ < fl < b. 

Our approach differs from that of Jeanblanc-Picqu~ mainly in two ways. First, 
we do not necessarily require that the process stays within a given band [a, b] but 
there is a given function which determines the cost of leaving a certain implicit 
exchange rate band. Secondly and more importantly, we allow for two  types of 
control, namely both discrete-time foreign exchange interventions and continuous- 
time interest rate control. Mathematically, this leads to a combination of impulse 
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control and (continuous) stochastic control. Moreover, we assume that the cur- 
rency band is not necessarily credible and may be exposed to speculative attacks. 
In particular, when the domestic currency moves above (below) its central parity, 
there may be expectations of further depreciations (appreciations), leading to 
higher (lower) domestic interest rates. The central bank may pe,mit the domestic 
interest rate to rise to a certain level above the foreign interest rate. When an 
optimal level is attained, the central bank applies its second instrument for 
affecting the exchange rate, namely foreign exchange interventions. We determine 
the optimal timing and amount of such interventions. We then derive an optimal 
distance of the exchange rate from its parity at which interventions are to take 
place, and the overall costs of applying the two instruments are minimized. 

3. A mathematical model for the optimal control of the exchange rate 

Here we will present a model based on the theory of combined stochastic 
control, of how the government can minimize the total costs of large exchange rate 
deviation from its central parity, the costs of interventions and of the interest rate 
differentials. For more background and details we refer to Brekke and Oksendal 
(1996). 

Let Y, = the exchange rate at time t (the number of domestic currency units 
required to buy a unit of foreign currency). If Y, is high then the domestic 
currency is weak, if Y, is low then the currency is strong. 

We denote the central pario' by m. The government tries to keep Y, within an 
optimal interval containing m. For this purpose the government has two control 
possibilities: 
1. By choosing the domestic buerest rate r,. Authorities will set a higher interest 

rate to compensate the investors for a weak national currency, so that these 
investors get a higher return by investing in the domestic country. If this policy 
is successful, that is, investors obtain enough interest income to compensate 
them for a depreciating currency, investors will begin to buy the domestic 
currency, and as a consequence this currency becomes more valuable and the 
exchange rate goes down and moves back toward the central parity. This type 
of control r =  (r,) ,~ tt is called the continuous control. The set of all continu- 
ous controls is denoted by U. 

2. At selected times the domestic country can use its international reserves to 
intervene in the foreign exchange market. The effect of intervening by buying 
(selling) foreign currency is to make the national currency weaker (stronger). 
So the national currency becomes less (more) valuable and the exchange rate 
goes up (down). This kind of control is applied only at discrete, selected 
(stochastic) times 0j and with selected amounts ~i at these times. The double 
sequence 

r = ( 0 ,  , 0 2 ,  • • " , 0 N  : ~ , ~ : , _ ,  • • • , ~ N )  
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is called the impulse control/intervention. Here N _< ~:, 0 k _< 0~. i and O k ~ ~: 
as k ---> N (so if N is finite then 0~v = x). The set of all impulse controls is 
denoted by V. 
The pair w = ( r ,  v) ~ U × V is called a combined stochastic control. We set 

W = U X V .  

A rapidly fluctuating, unpredictable exchange rate is bad for the country 
because of the uncertainty that it creates to the corresponding market participants. 
On the other hand. the application of the controls w =  ( r .  v) to stabilize the 
exchange rate is also costly and therefore one tries to apply the controls in an 
optimal way. High domestic interest rates can cause high social costs and it can be 
very undesirable at times when the country is facing some recession for example. 
Certainly, the amount of reserves that a country possesses is not unlimited either, 
even tbougil the ERM countries have large facilities of credit lines for borrowing 
reserves. All of this is, however, costly. 

Let ?, denote the foreign interest rate at time t. We assume that if i', = ~, and 
there are no central bank interventions in the foreign exchange market, then the 
exchange rate Y, will behave like Brownian motion. B,. and one can expect to be 
in a pure float exchange rate regime. 

Let -- F(r ,  - ~,) denote the effect on the exchange rate produced by the interest 
rate differential r r - ~:r. It is natural to assume that F has graphically the following 
form: 

F (r:r) 

/ 
(r4) 

More precisely, F is concave, increasing and we have 

F ( r - ~ )  > 0 ~ r - ~ > 0  

The form that we assume for F tells us that the effect of the interest rate 
differentials on the exchange rate decreases as the interest rate differentials 
increase. T~'erefore high levels of the domestic interest rate in relation to the 
foreign one are ineffective. When this becomes so, the central bank may consider 
it optimal to intervene in the foreign exchange market. 

Let ~/(~) denote the effect on the exchange rate obtained by intervening by 
buying (if ~ > 0) or selling (if ~ < 0) the ~mount ~ of foreign currency. Again it 
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is natural to assume that ",/is concave, perhaps linear. Moreover, y(  ~: ) > 0 ~, ~ > 
0. 

/q 

Similarly here, the marginal effectiveness of a central bank intervention in the 
foreign exchange market may decrease with the absolute amount of intervention. 

Hence, if the combined stochastic control w = (J,,  (01, 02. -. • ; ~l, ~2, " "" )) 
is applied to the exchange rate Y,, it gets the form 

E (l) 
j:#p <_ t 

where o- > 0 is a constant, ?, the foreign interest rate and B,(co); ~o ~ g /denotes  
Brownian motion. 

Suppose that the discount rate is p > 0 and that the cost rate for the society of  
having the exchange rate Yt is K ( Y , -  m), where K(x)>_ 0 for all x. Let 
R(r,  - ~1) >- 0 be the cost rate of  having an interest rate differentiai r, - ?t and 
suppose that the cost of applying the impulse control ~/ at time 0j is L(~:/) > 0. 

Put x=(s, y). Then the total, discounted expected cost of applying the 
combined intervention control w = ( r  t, (01, . - • ; ~:1. • • - )) is 

J'~( s'Y) -- E'l fre-"'( K( Yt- m) + R( r'- ~l))dt .~ .i:oj<_T~ L( ~i)e-""'] 

(2) 

where T_< ~ is a given (fixed) future time and E" denotes expectation with 
respect to the probability law of Yt starting at y. Notice that we do not a priori 
assume symmetric costs for intervening (buying and selling foreign currency). In 
reality it may be the case that the latter is more costly than the former because the 
loss of reserves is more negative to the country than the accumulation of  reserves. 

P rob lem 1. Find 

A ( x )  := inf J'"(x) (3)  
wE;7/'" 
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where ~"  denotes the set of all combined stochastic controls. Moreover, find 
w ' ~  ~"  such that 

A ( x ) = J " ~  (., -) 

i.e. w* is a corresponding optimal combined stochastic control. 
The function J " ( x )  is the total expected cost that one incurs by starting from 

the state x = (s, y) and applying the control w. Therefore, A(x)  represents the 
minimal total expected cost when the state of the system starts at x. 

A(x) is called the t'ahte of the system at state x. 

Solution method to Problem 1. From now on we assume that ~, = ~(t) is 
deterministic and we only consider Markm" i~terest rate controls, i.e. interest rate 
controls of the form 

r,(to) = r(t ,Yr(to)) 

for some function r: R-" ~ R .  

Then if there are no (impulse controls) interventions in the tbreign exchange 
market by the central bank, the process 

X ,  - -  X~ "~ = • = ~,. , t >__ 0 :  X~, = x ( 4 )  

will be an Ito diffusion whose generator A ~'1 coincides (on the space Co(R'-) of 
twice continuously differentiable functions on R-" with compact support) with the 
partial differential operator 

a f  By t • ~)2f 
. = . = . - - - + - , ~ -  ( 5 )  L"( s, v) L r' ..... 'f( s, v) as F ( r ( s , v )  ? ( s ) )  av 2 ~v-" 

which is defined for all functions f :  R-" ~ R for which the derivatives involved 
exist at x = (s, v). 

If w =  (r,  c) is a combined stochastic control we put (with a slight abuse of 
notation) 

rs+,  [;] = . , .  

The probability law of X] ''~ is denoted by Q'" '  and the expectation w.r.t. Q~" 
is denoted by E ''''~ or just E". 

A continuous function ~b: R ~ R is called stochasticalh" C'- w.r.t, the Ito 
diffusion X, = X~ ') if the following generalized Dynkin fonmda holds: 

[( ] = L"' x , ' ~ (  Xt)dt (6) e'[ x, . ) l  + e '  
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for all stopping times r(co), 7"(oJ) satisfying 

,r< ~-' _<rain= {R,inf{t > O;Ix, I > R}} 

for some R < zc. 

Remark.  This concept was introduced in Brekke and Oksendal (1991). There it 
was proved that, under certain conditions, a function ~b which is C' (continuously 
differentiable) everywhere and C-" (twice continuously differentiable) outside a 
'thin' set (w.r.t. the Green measure GX( • ) of X,) is stochastically C 2. 

Define the switching operator ,g/ by 

. / / h ( s , y )  =inf{ I1( s , y +  y(  s c )) + L( ~: )e -p'} (7) 

for all Borel functions h: R 2 ~ R . . ~ / i s  a non-linear operator, h -->.I/h, mapping 
bounded measurable functions into bounded measurable functions. Suppose that 
for each (s,  y) the infimum in Eq. (7) is achieved by at least one ~ =  t ~ ( s , y ) ~  R 
and let ~=S~),(s,y) be a measurable selection of such (s.  

If h is a cost function then we may regard . / /h(x)  as the minimal cost we can 
achieve by an intervention in the foreign exchange market at x. assuming that the 
central bank must intervene. Such an intervention of size ~ transforms the state 
from v t o  v + y ( s  c), 

Using a result of Brekke and Oksendal (1996) we now get: 

Theorem 1. (I) Suppose there exists a continuotts fimction ~b: R'- ~ [0, :¢) with 
the fidlowing properties: 

dp is stochastically C 2 w .r . t .  ~(~'~ Jbr all r: R 2 --* R (8) 

tb <.//d~ on R 2 (9) 

L*~,(s.:,) + e-"'( X ( y - m )  + R( r -  ~)) >_ 0 (10) 

,~r a.a. (s, y) w.t,t, the Green measureJbr  X~ "~, .for al l  r =  r(s,  y): R 2 --* R. 
Then 

4 , ( x )  <_ J " ( x ) f o r  all w ~ 7 /  

(II) S~lppose that, in addition 1o Eqs. (8)-(10). there exists a fimction P: 
R 2 ~ R such that the minimal value zero 0 of  the left hand side o f  Eq. (10) is 
attained, i.e. 

La*': '~b(s,y) + e - " ' (  K( 3' - m) + R( P(s ,y )  - ?,)) = 0 (11) 

fi~r all (s,  y)  ~ D, where 

O'= { x;~b(x) <.~"6( x)} (12) 
Define the following impulse control P - - (  0,, 0 2, . . . "  ~.,, ~,_, . . .  ) induc- 

tiveh' as follows: Put 0 o = 0 and 

0,+. =inf{t  > Ok:Xlk'~ D}, k = 0 . 1 , 2 , . . -  (13) 
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where X~ k~ is the result o f  applying the control 

to X t, and 

" - ~  I X~k~ .-. 0;. , ):  k = 0 . 1  - - -  (14)  

(where Xo;., = lim t r , ,X, )" 
Put 6" = ( ~, ~ ) attd suppose ihat 

lim 0~. = ~ a.s.Q.,.,r, f o r a l l x ~ R  (15) 
k--* x 

and that 

lim E' [  d~( Xo~l,)] = 0 ,  f o r a l i x  ~ R (16) 

Then 

q0(x) = A(x )  (17) 

and the optimal combined stochastic control is 

w* = a ' ~ / "  (18 )  

Remark. D defined by Eq. (13) is called the continuation region. No intervention 
in the foreign exchange market should be made while X, is in D, only the optimal 
continuous control (interest rate) 71. When X, reaches aD we apply an (impulse 
control) intervention control (according to Eq. (15) above), which will bring X r 
back into D (inside the currency band). Thus the optimal amount ~ + t  to selI 
(buy) at time 0k÷ i is the (measurably selected) value of ~ which gives the 
minimum of 

X~} g( ~) := *(Ok+ ,. 0~. +y(sc))+L(.~)e -'"''' (19) 

For a proof see Brekke and Oksendal (1996, Theorem 3.1). For a related result 
(which, however, is insufficient for our application) see Theorem 2 in Perthame 
(1984). 
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4. A special case 

As an illustration we consider the special case when the functions in the model 
have the following forms, which seem reasonable as a first approximation for the 
model: 
I. The function F ( x )  which gives the effect of the interest rate differential x on 

the exchange rate, is given by 

F ( x )  = bx ( b > 0 constant) 

2. The function y ( ~ )  which gives the effect on the exchange rate by the 
intervention of size ~ is given by 

9, ( x )  = ax ( a > 0 constant) 

3. The function R(x)  which gives the cost rate of the interest rate differential x is 
given by 

R ( x )  = f i x  2 ( 13> 0 constant) 

4. The foreign interest rate ?t is constant. By translation of the axis of units we 
may then assume for simplicity that 

~,=0 

5. The cost of an intervention of size ~ is given by the function 

L( s c ) = AI ~:l + c ( A >_ 0, c > 0 constants) 

6. The central parity m is constant. For simplicity we may assume that the units 
are chosen such that 

it/ ~ 0  

7. The discount rate p is constant. 
8. The cost rate K ( y )  of having the exchange rate v is an even function (i.e. 

K(y)  = K ( - y ) ) .  

Remark.  The constant c represents a fixed, basic cost for each (impulse control) 
intervention (independelac of ~/). Each such intervention is a large operation 
involving several people (who can otherwise use their time on other activities) and 
several hours of discussions and considerations. It therefore represents a cost of at 
least c > 0, no matter the size of the operation. Note that c > 0 implies the 
impossibility of applying such interventions continuously. 

In this case the problem becomes (with T = ~): 

Problem 2. Find A(x) and w* such that 

A ( x )  = inf J " ( . , )  = J "  ( x )  
w~Tf" 

(20) 
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where 

J " ( x ) = J W ( s , y ) = E  " e-O'(K(Y, )+13r~)dt+~e-P°, (c+Al~l  
J 

(21) 

and 

v, = v , , - , ( , , )  = ;. - forb~ds + ~a,(o,) + a E ¢, 
j:Oj<_.t 

(22) 

Solution to Problem 2. Then Eq. (1 l) becomes 

O~b aS 1 , O2~b 
- -  - b a - -  + - o ' -  + e -  P"( K ( y )  + f l a  2) > 0 
as by 2 03 ̀2 

for a.a. 3' ~ R and all a ~ U = R. 
The minimum of the function 

g ( ~ , )  -~ - b . ~  + t~, ,:e - ' '  
by 

(23) 

(24) 

is obtained when 

b O~b 
a - -  • - - e  p'" ( 2 5 )  

2~ bv 

Note that this value of a is our candidate for the optimal interest rate control 
~(s, y). 

For this value of a the left hand side of Eq. (23) is required to be equal to 0 in 
D: 

Od~Os 2flb"IOd)12, 1 ~  1 0 3  '202~b b-" [ O~b ~ 2 p, e"" + ~,~'-  + e - " ' r ( : . )  + = ~ - - ~ ! c ~ v ~ e  O i n O  
- r ' -  ~, . -  ] 

(26) 

or 

0~ 1 0 2 ~  b2 [ 0 ~  2 
0s 2 03 ,2 4fl ~ ep'  + e-P"K(y)  = 0 in D (27) [J 

As a candidate for the minimal cost function A(s, y) we try a function & of 
the form 

d~(s,y) = e-P"~(y)  (28) 

for a suitable function ~0 (to be determined) and we assume by symmetry of K 
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that D has the form 

D = R × ( - "r/, T/) for suitable 7/~ (0,~)  (29) 

The interval ( -  r/, r/) can be interpreted as the band of "admissible" exchange 
rate values, or the "no intervention band' (where there will not be any central bank 
interventions in the foreign exchange market). Hence the exchange rate values - 7/ 
and 7/are the "trigger' levels for intervention in the foreign exchange market by 
the central bank. 

Then from Eq. (27) we get 

1 b-" 
2o--'~"( y ) -  ~-~( 4 / ( y ) ) 2 -  p~/,(y) + K ( y )  = 0; ," ~ ( - r/.r/) (30) 

Eq. (30) has the form 

~"(3") - A (  qJ'( y))-' - B 0 ( y )  = - C ( y )  (31) 

where 

b'- 2p 2 K ( y )  
~ ~ . A 2/3o'-' '  B ---Vor_ and C ( v )  = ~ t r _  (32) 

By symmetry it is enough to consider the case when y > 0. From the general 
theory of ordinary differential equations (see e.g. Birkhoff and Rota, 1989, 
Theorem 8, p. 190) we know that there exists T > 0 (the explosion time) such that 
for any choice of initial values f(0), f ' (0)  Eq. (3 I) has a unique solution ~b = f ( y )  
for y < T. In particular, for each given z >  0 we let f (  y )  = f=( y); 0 < y <  T be 
the unique solution of 

f " ( y )  -- z 4 ( j ' (  ..,))2 _ B f ( y )  = - C (  y)" 0 < v < T 
f ( O )  = ~z, f , ( O ) ' ~  0 " (33) 

We now assume that there exists : > 0 such that for at least two different 
values of v ~ (0, T), say Yt < Y., < T, we have 

A 
f ' ( Y , )  =f~(Y2) = - -  (34) a 

From now on we choose yt < y, to be the two smallest positive numbers with 
this property. 

We also assume that 

f~ ' (y , )  > 0 (35) 

We now choose 7/(the exchange rate trigger level for intervention) as follows: 

7/= Y2 (36) 
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q =  y.,_ 

237 

J 

and as our candidate for the value function ~ in the interval [0, r/] we choose 

~ ( y )  = f : ( y ) "  0 <y_< 7/ (37) 

Remark. To illustrate that the situation Eqs. (3a) and (35) is not unusual, consider 
the special case with b =A =0 ,  B =  ! and C(y)  = v -~ in Eq. (31). Then the 
solution of Eq. (33) is 

f . ( y )  = (  : -  2)cos h (y )  + ,,-~ + 2 

and we see that the equation (in v) 

), 
.L'(Y) = ( - - 2 ) s i n  h ( ? , - )  + 2 v = - 

t /  

has two solutions y., 3'2 > 0 if 0 < z < 2 and 

2Arccos h -~-'-2_-2 < -- + / z(4 - z) (38) 
a 

Moreover, if Eq. (38) holds then 

K(Y~) > o, K(Yz)  < o  

(To see.: this, consider the function 

A _M) 
t /  

g ( y )  := ( - -  2)sin h ( y )  + 2v  

Next, we consider the switching operator, which in this case gets the tbrm 

• # , / , ( s , r )  = i n q  ,1,( .~,y + a~ ) + ( al~l + c)e-V'} 
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In terms of ~b(y) = eP'(s. 3') we get the operator 

. ~ O ( y )  = i n f { O ( y  + a~:) + Af~:I + c} (39) 

Again by symmetry it is enough to consider the case v > 0. The first order 
condition for the minimum of the function 

V 

/7(~)'=~(y+a~) +al~l+c, - -  <~<0 
a 

gives that at a point ~?= ~(y)  < 0 where the minimum in Eq. (39) is attained we 
have 

A 
~ ' ( : .  ÷ , , ~ )  -- -- 

t'l 

By Eqs. (34) and (35) we get 

1 
,. + i .e.  : , )  = - (  :,, - : , )  < o  

a 

In particular if v =  rl (the trigger level) we get by Eq. (15) that 

1 
~(r/) = a ( y  , -7 / )  <0 (40) 

is the optimal intervention size and this pushes the exchange rate from r/back to 
the level Yl: 

y, = -r/+ a~(r/) (41) 

Hence since 

~b(y) = . g ~ ( y )  for v > 7/ 

we have 

~O(y) =~, (y+a~Z(r / ) )+  Alff(r/)l+c 

= ~ ( y , )  - A ~ ( r / )  + c ( 4 2 )  ( Ay,) A 
= ~ ( y , ) + c  - + - - v  for v>T/  

a a 

Thus we have a definition of our solution candidate $ ( y )  as follows (see Eq. 
(37)) )(3") for0 < y  < r / = y  2 

= A ( 4 3 )  
~(Y) (y , )  + c +  a ( y - y , )  f o rn<v  

• = , ' ~ R .  and ~ , ( -  v) t/ ,(y),. ,  
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Continuity and smoothness (C ~) at v =  r/give the requirements 

it 
L ( n )  = L (  y, ) + ," + - ( n  - ; , )  (44)  

a 

A 
O ' ( n )  = - ( 4 5 )  

a 

(follows form Eq. (34)). All the conditions of Theorem | are now satisfied, 
including Eq. (16) (since .v~ < rl). Therefore we can summarize the above as 
follows: 

T h e o r e m  2. For - >  0 let f : (y) ;  0 <3" < T be the unique solution o f  the 
differential Eq. (33). Suppose Eqs. (34) and (35) hold. Put r I -~ y,_ and define 

~'); a 

q'(Y) = ~-(Y) = ( : . , )  + c +  - ~ ( , - - : . , ) :  

O<y_< r/ 

r / < v  
(46) 

and 

q , ( - y )  = q,( 3.); 3.~ e 

Suppose there exists a t'alue o f "  > 0 such that 

A 
L ( n )  = L ( y , )  + c +  - ( ~ -  y,) (47) 

a 

Then with this z'alue o f :  we get that the.fimction 

A(x)  := O( s ,y )  := e-"'O:(3") (48) 

is the calue f iuwtion o f  Problem 2. 
Moreover, the corresponding optimal combined stochastic control w ~ = ( rf ~ , 

v * ) = ( r, ~ , ( Ol*, 0;_" . . . .  " ~l*, ~,f , . . . ) ) i s  the following" 
(a) When I Y, I < Iwl use no intereention control (no buying or selling o f  foreign 

currency), only the optimal continuous control (interest rate) given by Eq. (25): 

b b 
"f~ = r" ( Y )  = X-X. * ' ( Y )  -- X-'~f'(3") ( 4 9 )  z p  z p  

(Note that such a ~_'ahle o f  r ~ will introduce a drift in the exchange rate Y, 
git'en by Eq. (22) towards the "best" value Y, = 0). 

(b) When Y, reaches the calue - rl or 71, we make an hztereention (by  b'Lving 
or selling foreign currency, respectieely) o f  the size ~ (n )  > 0 or - ~(O) required 
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to bring Y, m the rahte - Y l  or Yz, respectirely. Thus the opthnal bnptdse control 
is defined inductirelv by 

0,": = inf{t > 0:lr, I-- n} (50) 

tllld 

Oi= inf{t > 0 , '  ,:IY, I = rl}: k = 2 , 3  . . . .  (51) 
with optimal hnpulses ~ '  giren by 

[~[~ = ~(r / )  > 0  ( required to bring Y, to - y ,  if Yo . . . . .  rl) 
(52) 

tsck" = - ~ ( r / )  < 0  ( required to bring Yt to)', (]'Yo,- = r / )  

where ~(~1) is defined in Eq. (40). 

Remark.  The above example was discussed primarily to illustrate the content of 
the general model. Unlbrtunately, even in this simple case we are unable to find an 
exact, analytic solution. Nevertheless we can describe a few characteristics of the 
optimal strategy. We mention two examples: 

(I) Note that by Eq. (49) the optimal interest rate r *(y)  is proportional to 
~b'(y). Therelbre the maximal value of r ~ (y )  occurs at the point v =  ¢" where 
0 ' ( y )  is maximal. By Eqs. (34) and (35) this occurs at a point ~ ~ (Yl, .v2) such 
that 

£'( .~)  = 0  (53) 
Note in particular that .x'j < (" < y_~ = r/. Thus we get the perhaps surprising 

conclusion that r :"(3') is not maximal at the trigger level rl for intervention, but 
before this level is reached. This means that (in our model) the interest rate control 
r~" becomes relatively costly/ineffective (and hence should be reduced) as the 
exchange rate increases beyond ~ and approaches the trigger level for intervening. 

(II) It is an interesting question how the optimal strategy depends on the 
minimum cost of intervention, c. The value of ~b at a given point y will depend 
on c, so we have 0(Y) = 0(c,  3'). Similarly the numbers Yl and r/depends on c: 
y~ = yl(c), r /=  r/(c). Therefore Eq. (47) can be written 

A 
~(  c , , ? (c ) )  = ~,(c. : ' , ( , ' )  ) + c +  - - ( n ( ( ' )  - 3",(c) ) 

gl 

Assume that the functions ~(c,  y), r/(c), y~(c) are continuously differentiable 
for (c, v) ~ (0. ~) × R. Then we get 

O,O( c,~i( c) ) + D2~b ( c,r/( c) ) " r t ' ( c )  

A 
--': D, 6 ( c . y ¿ ( c ) )  + O z 6 ( c . y , (  c ) ) - y ' , ( c )  + l + -- ( r / ' ( c )  - y ' , (c))  

a 

(54) 

where D~, D_, denote differentiation w.r.t, first and second variables, respectively. 
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Now by Eq. (34) we have 

A 
O2~b( c,~l( c) ) = --  = O2d/( c, y,(  c) ) 

and hence Eq. (44) leads to 

D ~ ( c , n ( c ) )  = D , ~ ( c , y , ( c ) )  + 1 for all c > 0 (55) 

In particular, this implies that the value function is more sensi+:,ve to an increase 
in the minimum cost c of intervening (by impulse control) in the foreign exchange 
market near the trigger value r/than at y~. This is natural since an approach of the 
exchange re~te towards r/ makes intervention indispensable and a fixed cost c 
therefore plays an important role. 

( l id Since ~(c, y) decreases when c decreases for fixed y+ we can define ~b(O. 
y )  = lim, _, ()~(c, y). Suppose that 

rt(0) "= lim r/(c) and y,(O) := lim y,( c) (56) 
c- - ,0  c -*O 

exist and that 0(c, y) is a continuously differentiable function for (c+ y ) ~  [0. 
~) × R. Then by Eq. (55) we get 

O,~(O,~(O))  = Ot,(O+y,(O)) + 1 (57) 

in particular, we get the surprising conclusion that +7(0) ~ y~(0). 
We conclude that, if the functions ~b(c, y), ~7(c), yl(c)  are continuously 

differentiable for (c, y) ~ (0, :c) X R and Eq. (56) holds, then one of the following 
two situations occurs (possibly both): 

Either 

o r  

lim D , ~ ( c , ' o ( c ) )  = lim D, ga( c..v,( c) ) = :~ 
c--~O c--*O 

(58) 

y , (O)*n(o )  (59) 

If Eq. (59) holds, this means that no matter how small the minimum interven- 
tion cost c > 0 is, the optimal strategy remains of impulse control type with the 
size of the jump (from 7/(c) to y~(c)) bounded away from zere. 

The conclusion is surprising, since if we start out with the assumption that 
c = 0, then it is reasonable to expect that an optimal strategy will be to intervene 
infinitesimally (if A > O) every time the exchange rate Yt reaches certain trigger 
values +.E (See e.g. Krugman, 1991, Froot and Obstfeld, 1991a, and see also the 
related problem discussed in Davis and Normann, 1990.) So if this is correct, then 
we would expect to have yl(0) = rt(O) = ~ and the resulting optimal exchange rate 
process to be a Brownian motion in [ - ~ ,  ~] reflected at the boundary +~. (We 
emphasize that if c > 0 then by Eq. (21) infinitesimal interventions are not 
optimal.) 
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Eq. (58) is not quite so dramatic, but still expresses a non-smooth relation 
between the intervention cost c and the value function ~b near c = 0. 

5. Final remarks 

The main purpose of this paper has been to find a mathematical formulation of 
the problem of controlling optimally (under uncertainty) the exchange rate by 
means of 
I. the domestic interest rate and 
2. interventions in the form of buying or selling large amounts of foreign 

currency. 
We have proposed a mathematical model consisting of a combined stochastic 

control/impulse control problem and we have given a sufficient condition for its 
solution in terms of quasivariational Hamilton-Jacobi-Bellman inequalities Eqs. 
(8)-(16). In general there seems to be little hope of obtaining explicit solutions. 
However, the model may still give some a new insight, it is a demanding task to 
find efficient numerical solution methods. We leave this for future research. 
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