The rising influence of family background on early school performance

Simen Markussen, Knut Roed *

The Ragnar Frisch Centre for Economic Research, Oslo, Norway

A R T I C L E I N F O

JEL classification:
I24
J62

Keywords:
Intergenerational mobility
Achievement gaps
Parental influence
Meritocracy

GPA

A B S T R A C T

We use administrative data from Norway to examine recent trends in the association between parents’ prime age earnings rank and offspring’s educational performance rank by age 15/16. We show that the intergenerational correlation between these two ranks has increased over the past decades, and that offspring from economically disadvantaged families have fallen behind. This has happened despite public policies contributing to leveling the playing field. We show that the expansion of universal childcare and, more recently, the increased teacher-pupil ratio in compulsory school, have disproportionally benefited lower class offspring. The rising influence of parents’ earnings rank can partly be explained by a strengthened intragenerational association between earnings rank and education among parents, as educational achievement has an inheritable component. Yet a considerable unexplained rise in the influence of family background remains, consistent with evidence pointing toward increased parental involvement in children’s lives, plausibly in response to higher returns to education.

1. Introduction

Equality of opportunity is a widely accepted aim of economic and social policy. From an intergenerational perspective, equal opportunities imply that offspring born into poor families have the same chances in life as those born into richer families. The empirical literature on intergenerational earnings correlations points to Norway and the other Nordic countries as being among the most socially mobile societies in the world (Corak et al., 2014; Jäntti et al., 2006; Bratsberg et al., 2007; Black and Devereux, 2011; Blanden, 2013; Bratberg et al., 2017). However, although the literature on mobility trends in these countries shows mixed results (e.g., Bratberg et al., 2005; Hansen, 2010; Pekkarinen et al., 2017), recent empirical evidence from Norway suggests that intergenerational mobility has come under pressure, particularly at the bottom of the socioeconomic class distribution (Markussen and Roed, 2020; Hoen et al., 2021). As intergenerational earnings mobility metrics typically require earnings data for both parents and offspring at mature age, there is so far no empirical evidence covering offspring born after the early 1980s. Existing studies have therefore not been able to capture any recent shift in mobility trends, e.g., arising from the massive expansion of publicly provided childcare or increased investments in school quality. In order to obtain mobility statistics for more recent cohorts, it is necessary to focus on outcomes revealed at much lower ages, yet predictive for adult earnings, such as early educational performance; see, e.g., Dodin et al. (2021) for an application based on this idea using German data.

The present paper contributes to the literature by examining trends in intergenerational mobility for cohorts born in Norway from 1986 through 2005. In the main part of our analysis, parental class background is measured in terms of the parents’ prime age earnings rank (PER), based on the best three earnings years during age 34–40, whereas offspring are ranked based on their grade point average (GPA) from lower secondary school, adjusted for variation in local grading standards. The latter adjustment is made based on data on externally graded exam results and test scores. Although observed at low age (15/16), we show that adjusted GPA is a strong predictor for adult earnings; hence it can serve as a reliable early indicator for structural shifts in intergenerational mobility patterns. A key finding is that the trend toward declining bottom class mobility in earnings rank seems to continue into the new millennium in terms of school performance rank. For the 1986–2005 birth cohorts, we document a widening gap in performance between offspring from different parental earnings classes, and, in particular, a significant decline for offspring born into economically disadvantaged families.

To put our findings into the perspective of the intergenerational economic mobility literature, Fig. 1 shows how the trends in school

* Corresponding author.

1 A strong relationship between high school GPA and adult earnings has also been shown to apply for other countries; see, for example, French et al. (2015) for the US.

https://doi.org/10.1016/j.econedurev.2023.102491
Received 8 June 2023; Received in revised form 1 November 2023; Accepted 6 November 2023
0272-7757/© 2023 Elsevier Ltd. All rights reserved.
performance rank by parental earnings rank almost perfectly line up with the corresponding trends in prime age earnings rank outcomes observed for previous generations. Given that earnings obtained as adults and GPA score obtained at age 15/16 intuitively appears to be quite different variables, we find the similarity in the class structure of the two rank outcomes quite remarkable. Together, the observed class-specific trends in earnings ranks (for the 1952-86 birth cohorts) and adjusted GPA ranks (for the 1986–2005 cohorts) form a consistent pattern of declining bottom class mobility over more than five decades.

Our analysis of recent mobility trends relates to a large literature on socioeconomic achievement gaps in education; see, e.g., Reardon (2007), Broer et al. (2019) and Chmielewski (2019). A common finding is that the disparity in academic achievement between students from high and low socioeconomic status (SES) backgrounds has increased over time in most countries, yet with considerable disagreement about trends in each country. A study of particular interest in our context is Sandor et al. (2023), who examine a decade of achievement gaps (2007–2018) by parental income and education using population data from Norway. They find that achievement gaps increased when parents are ranked based on income (comparing the predicted 90th and the 10th percentile), but remained stable when parents are ranked based on education (comparing master degree with at most high school degree). This illustrates a potential problem with the SES concept when used to assess changes over time, namely that the marginal distribution of variables used to define SES, such as education (or occupation), also changes over time. A notable element of our contribution to the literature is that we describe parental background as well as offspring outcomes in terms of metrics that, by construction, have the exact same marginal distributions across all parent/offspring pairs, and argue that what facilitates a direct comparison of trends in socioeconomic achievement gaps with trends in other indicators of intergenerational mobility, such as the earnings rank associations shown in Fig. 1.

A second contribution of our paper is that it examines empirically several mechanisms behind observed changes in the influence of parental earnings rank on offspring’s early school performance. Whereas the previously identified trends in intergenerational earnings mobility may be attributed to structural changes in the labor market (e.g., skill biased changes in labor demand due to technology, trade, or immigrant competition), the fact that the trend toward lower mobility is manifested already in school results measured at age 15/16 suggests that we also have to look for explanations elsewhere. The strengthened association between parental earnings rank and offspring school performance must either reflect that human capital investments and/or intergenerationally transferable parental characteristics have become more strongly associated with earnings rank among parents, or that a given set of parental characteristics have become more important for early educational performance among offspring. Whereas the former explanation may reflect increased social mobility over the parent generations (i.e., good news, from an equality of opportunity perspective), the latter may reflect declining mobility over the offspring generations (bad news).

To evaluate the case for a strengthened intragenerational association between earnings rank and inheritable characteristics, we examine data on parents’ parental background (i.e., the earnings rank of the offspring’s grandparents), on fathers’ cognitive ability (IQ), and on parents’ educational attainment. We find no support for the “good news” that declining mobility over the offspring cohorts is an artefact of rising intergenerational mobility over the parent cohorts; neither do we find evidence that fathers’ IQ has become more strongly correlated with parents’ earnings rank. To the contrary, we present evidence indicating that the parent generations in on our data (typically born between 1950 and 1980) were subjected to declining intergenerational earnings rank

![Fig. 1. Parent-offspring rank-rank associations for native offspring born 1952–2005.](image)

Note: The figure shows average offspring prime-age earnings or GPA rank on a uniform [0,1] scale by parental earnings rank (PER) class. PER is divided into five classes: Bottom class (first decile), lower class (decile 2–3), middle class (decile 4–7), upper class (decile 8–9) and top class (tenth decile). Parents are ranked based on earnings age 52–58 (for offspring cohorts born 1952–1977), on earnings age 42–48 (for offspring born 1962–1986), and on earnings age 34–40 (for cohorts born 1986–2005). Offspring are ranked based on own earnings age 34–40 (for cohorts born 1952–1977), on own earnings age 28–34 (for cohorts born 1962–1986), and on grade point average (GPA) from junior high school, adjusted for local grading practices (for offspring born 1986–2005). For parents, the rankings are based on the highest three of the (up to) 14 earnings observations for the father and the mother during the indicated seven-year periods. For the offspring age 34–40 and 28–34 rankings, we also use the highest three of the (up to) seven annual earnings observations. Earnings obtained in different calendar years are inflated to a common value based on the wage growth index used by Norwegian pension system.
mobility and that the association between parents’ earnings rank and father’s IQ became slightly weaker. In that sense, we can reject a general trend toward meritocracy over the parent cohorts as the driving force behind declining mobility over the offspring cohorts. However, we do find that the parents’ earnings ranks became more strongly associated with their own (relative) educational attainment, suggesting that the returns to education increased over the parent cohorts. To the extent that educational ability is inheritable, e.g., as reflected in patience (low discount rate), self-control, and ability to concentrate in a classroom setting, this development may to some extent explain the strengthened statistical association between parents’ earnings rank and offspring’s school performance rank.

Several studies have focused on the relationship between income inequality and intergenerational mobility (e.g., Björklund and Jäntti, 2009; Blanden, 2013; Corak, 2013), and Durlauf et al. (2022) show that the negative association between inequality and mobility is consistent with a range of theoretical explanations, including family investments in human capital. We provide empirical evidence that increased income inequality has contributed most notably to the rising influence of parental background on offspring’s GPA score observed in our data. The differences in net-of-tax income (during offspring age 7–15) across different parental earnings ranks increased over the 1986–2005 birth cohorts, and we show that parents’ net income level is positively associated with offspring outcomes even conditional on parents’ earnings rank and other parental characteristics.

Whereas changes in the composition of parental earnings ranks and increased income inequality have contributed to strengthening the association between parental earnings rank and offspring GPA, we find that the expansion of publically provided childcare and (in more recent years) increased teacher-pupil ratio in primary and lower secondary schools has worked in the opposite direction. Exploiting the idiosyncratic (and arguably random-assignment-like) expansion of universal childcare coverage – largely driven by a national policy aimed at reaching full coverage – we confirm previously reported empirical evidence (Havnes and Mogstad, 2015; Cornelissen et al., 2018; Dearing et al., 2018; Zachrisson et al., 2023) that universal childcare enhances intergenerational mobility. Our estimates imply that the observed rise in the average age 1–5 coverage rate from 36% (for the 1986–cohort) to 84% (for the 2005-cohort) has reduced the top-to-bottom-decile GPA differential by 2.9 percentiles. In line with a recent meta-analysis covering 31 “credibly causal” studies from the U.S (Jackson and Mackevicius, 2021), we also find that investments in school quality has been to the relative benefit of offspring from disadvantage families. Our estimates imply that the recent increases the teacher-pupil ratio of approximately 0.02 has reduced the top-bottom GPA differential by 1.9 percentiles.

For the bottom parental earnings decile, we find that observed changes in the composition of parental characteristics can explain roughly half of the observed five percentage point decline in GPA rank. However, as expansion of publically provided childcare and school resources has offset much of this decline, we ultimately end up with an unexplained (residual) negative trend in the bottom class GPA rank that is close to the one we started out with. For the intergenerational rank-rank correlation, we end up with an unexplained rise that is even larger than the observed increase. Hence, our attempt to identify and quantify the mechanisms behind the rising influence of family background must be deemed a failure. We conclude that the explanation(s) must be sought in other aspects of the schools’ learning environment or in an increased parental engagement in offspring’s early education. Our findings are thus consistent with the mounting empirical evidence that parents’ engagement in the children’s schooling has increased in response to higher returns to education, and that the scale of the increased parental efforts to support their children has been positively correlated with the parents’ own human capital resources; see, e.g., Kalil et al. (2016), Doepke and Zilibotti (2019) and Flood et al. (2022).

2. Data, measurement issues, and trends

Our description and analysis of recent mobility trends is based on encrypted population data linking all residents born from 1986 through 2005 to their parents and grandparents. To ensure appropriate information about parental background, we restrict the analysis population to offspring with at least one Norwegian-born parent. We also require that the offspring were residents in Norway by birth and by ages 6 and 16. Earnings rank data for parents and grandparents are based on annual labor earnings, which are observed from 1967. Grade point averages (GPA) from lower secondary education are observed from 2002 and measured at age 15/16 in the final year of compulsory school. The Norwegian schooling system is comprehensive with a common curriculum, no tracking and no grade promotion or retention. The vast majority of students attend their local free-of-charge public school to which they are assigned based on residential address only.

Family class background as well as offspring outcomes are defined in terms of ranks within offspring birth cohorts, such that they (by construction) have exactly the same (uniform) distribution for all offspring cohorts. To establish the socioeconomic position of parents, we use prime age earnings as the foundation. Our aim is to obtain ranks that not only capture the availability of economic resources over a limited time-period, but also more broadly represent the parents’ human capital and earnings potential, their social status, peer characteristics and social networks. At the same time, it is important for our purpose that the resultant ranks have a stable social/economic interpretation across cohorts. Based on the earnings data available to us, we seek to achieve this by combining observed labor earnings for mothers and fathers over the seven-year period when they were 34-40 years old, inflated to a common calendar year value based on a national wage index. This gives us up to 14 annual parental earnings observations – seven for the father and seven for the mother. We pick the three highest annual earnings among the 14 observations of fathers and mothers combined, and use their average to rank the parental background of offspring belonging to each birth cohort (regardless of the birth-years of the parents), such that the resultant parental earnings rank (PER) is uniformly distributed on the (0,1]-interval. In cases of ties, which in practice only occur for a low number of zero-earnings-observations, we randomize the rankings of the tied observations in order to ensure uniformity. The primary motivation for the pick-the-best-three-years approach is that we expect lifetime earnings profiles and the relative influence of mothers and fathers to have changed over time. By choosing the highest of all earnings (irrespective of earner), we reduce the potential distorting influence of trends in household specialization and in the timing of labor market entry, and in movements into and out of the labor force (particularly by females). For grandparents, we use a similar strategy, with the difference being that their earnings are measured when they were 52-58 years old. Again, we pick the highest three of the available earnings observation and use them to compute the parents’ parental earnings rank (PPER).

Offspring outcomes are computed as uniformly distributed GPA ranks within each offspring’s complete same-sex birth cohort. GPA is a composite of grades obtained in all subjects at the final year of

2 We use the “Basic amount” (Grunnbeløpet), which is adjusted each year approximately in line with aggregate wage growth, and used as an important parameter in the Norwegian pension system

3 A thorough discussion of alternative ranking strategies is provided in Markussen and Roed (2020), see, in particular, Online Appendix A. As shown there, earnings obtained around age 50 are more highly correlated with lifetime earnings than earnings obtained at earlier ages. Hence, in order to come as closely as possible to a ranking based on permanent income, it is preferable to measure earnings at a relatively high age. However, to ensure full coverage for the relatively young parent cohorts included in our analysis, we have to measure earnings at lower ages.
compulsory school, some graded by the teacher and some by external examiners. As GPA contains an element of teacher assessment, it is conceivable that the grading standards are higher in environments with many higher-achieving students, in which case GPA is not a clean performance indicator. In the main part of our analysis, we therefore adjust GPA for local grading practices by comparing the average GPA at the school-by-year level with results from anonymous written exams graded by external examiners and national test scores in Norwegian, English, and Math. As the exam subjects vary from school to school and from year to year, we first regress individual exam results on subject and take out the residuals. The residuals are then standardized within cohorts and added up at the school-by-year level together with standardized results from the 8th and 9th grade national tests. Let TEST_t be the average of all standardized exam residuals and test scores obtained at school s for birth cohort t. Let GPA_{st} be the corresponding average of standardized GPA. To arrive at a grading-style-adjusted GPA for each offspring, we compute $\text{AdjGPA}_{st} = \text{GPA}_{st} - (\text{GPA}_{st} - \text{TEST}_t)$. The adjustment factor $(\text{GPA}_{st} - \text{TEST}_t)$ ensures that GPA’s obtained in schools that systematically give their students better (worse) grades than indicated by the results obtained in exams and/or national tests are adjusted downwards (upwards).

Fig. 2 presents our main results regarding recent trends in the statistical association between parental earnings rank (PER) and offspring (adjusted) GPA rank. As the intergenerational rank-rank associations are almost the same for boys and girls during the period covered by GPA data (as also illustrated in Fig. 1), we do not distinguish by sex. The ranks are computed within the gender-specific distributions, however, as there are considerable differences in school performance. Had we ranked boys and girls in a joint distribution, girls would on average be ranked approximately 14 percentiles above the boys (57th versus 43rd percentile). Gender-specific versions of Fig. 2 are provided in Appendix Fig. A1. Throughout the paper, we describe mobility trends in terms of rank-rank correlations and in terms of mean outcomes for specific parental rank bins. Whereas the former of these metrics provides a convenient summary measure for intergenerational mobility, the latter is motivated by the existence of non-linear trends, particularly at the bottom and the top of the PER distribution. As already anticipated in Fig. 1, we divide the population into five parental earnings rank bins: i.e., decile 1 (bottom class), decile 2-3 (lower class), decile 4-7 (middle class), decile 8-9 (upper class), and decile 10 (top class).

Panel (a) illustrates both the magnitude and the trend of the differential offspring outcomes by parental earnings rank. Whereas the average adjusted GPA rank of offspring born into the bottom parental earnings decile has declined from the 38th to the 33rd percentile, the rank of the top class has increased from the 62nd to the 65th percentile. The difference between the two groups has thus grown by approximately eight percentiles over the cohorts born between 1986 and 2005. Panel (b) shows that the correlation coefficient has increased from around 0.23 to almost 0.30 during the same period; i.e., by 30%. As the rank distributions for parents and offspring by construction have the same variance, the correlation coefficient can also be interpreted as the regression coefficient; hence, a coefficient equal to 0.30 implies that a one decile higher position in the parental earnings rank distribution raises the expected position in the offspring GPA distribution by 3 percentiles.

In Appendix Fig. A2, we show that the trends described in Fig. 2 are robust with respect to the way in which we rank the parents. We show results for three alternative ranking algorithms; one based on using the three best years for both mother and father (alternative A), one based on using the complete earnings histories for both parents during their respective ages 34-40 (alternative B), and one based on using the total net household income during the child’s age 7-15 (alternative C). All these alternatives indicate similar or larger increases in the achievement gap than what is suggested by our baseline specification.

In Appendix Fig. A3, panels (a) and (b), we show that the trends described in Fig. 2 are also similar if we use unadjusted instead of adjusted GPA, with the important exception that the top class no longer experience a noticeable rise in average rank. As shown in Appendix Fig. A4, the latter reflects that there is a social gradient in the difference between adjusted and unadjusted GPA, which has become much steeper over time, most likely as a result of increased school segregation (a phenomenon we return to in the next section). In view of the fact that GPA is a high-stake outcome, which directly affects the students’ likelihood of being admitted to the upper secondary education of choice, unadjusted GPA is an important outcome in its own right. As shown in Appendix figures A5 and A6 for the 1986-cohort (whose earnings now can be traced until age 34), both adjusted an unadjusted GPA ranks are powerful predictors for adult earnings rank, and the relationship is stronger for women than for men. For women, the correlation between adjusted GPA rank at age 15/16 and earnings rank during age 28-34 (three best years) is as high as 0.47, whereas it is 0.31 for men. The patterns shown in Fig. 2 may thus be taken as an early warning that the young people born into the bottom parental earnings class in our data are going to lose out, not only in GPA rank, but also in future adult earnings rank.

In Appendix Fig. A3, panels (c) and (d), we show that the rise in the achievement gap also prevails when we focus exclusively on results from written (anonymous) exams evaluated by external examiners, although the much larger contribution of noise in these data probably attenuates the illustrated relationships considerably.\(^5\)

3. Trends in the composition of parental earnings rank cells and their association with offspring opportunities

There are two very different interpretations of the widening gap in early educational performance across offspring with different parental earnings ranks. The first is that something happened over the parent generations that strengthened the association between earnings rank and other traits transferred to the offspring generations. A hypothesis of particular interest is that the parent generations experienced a shift toward a more meritocratic society (Nybom and Stuhler, 2022), such that the intragenerational association between earnings rank and the ability to offer a good learning environment for own children became stronger. The reason why we observe a stronger association between parental earnings rank and offspring outcomes is then simply that earnings rank has become a better proxy for parental traits that are important for the intergenerational transmission of human capital – not that the influence of these traits has changed. The second interpretation is that a given set of parental characteristics has become more important for offspring outcomes, such that opportunities have become more strongly related to family background. The reason(s) why we observe a stronger association between parental earnings rank and offspring outcomes must then most likely be sought in current circumstances or institutions.

Whereas the first interpretation is a tale of rising mobility among parents, the second is a tale of declining mobility among offspring. From a policy perspective, it is important to find out which interpretation is the most empirically relevant.

\(^4\) Our data include exam results for all cohorts born from 1986 through 2003, whereas national test scores are available for cohorts born from 1994 through 2005. Hence, for the first cohorts the adjustment is based on exam results only, whereas for the last cohorts it is only based on national tests. For the 1994-2003 cohorts, we use both sources.

\(^5\) Whereas GPA includes 10 different assessments, there is typically only a single written exam result. As there are large systematic differences in exam results depending on subject, we use exam results controlled for subject. This does not completely remove the influence of subjects, however, as not only the mean, but also the distribution of grades vary across subjects.
increasing extent come from lower class families. These trends speak against the hypothesis that the declining mobility recorded for the parent generations could explain the strengthened relationship between offspring and earnings classes suggests that the distribution of educational attainment may have become more skewed toward the higher earnings ranks. In Fig. 3, panels (e) and (f), we show in Fig. 3, panels (c) and (d), how the association between IQ rank and earnings rank has developed for the fathers to offspring born from 1986 through 2005. There is clearly a strong association between IQ and earnings rank. Whereas the average IQ rank in the top earnings decile is around the 65th-70th percentile, the average IQ rank of the bottom earnings decile is around the 33rd percentile. However, there is no indication that the relationship between earnings rank and IQ has become stronger. To the contrary, the correlation between the father’s IQ rank and the parents earnings rank has declined. Whereas the upper decile in the parental earnings distribution has lost some of its IQ premium, there is no clear indication that the bottom earnings decile has fallen more behind.

Finally, we examine trends in the association between earnings rank and educational attainment among parents. Previous evidence has indicated that the returns to education increased over the parent generations covered in this study (Markussen and Roed, 2020), implying that the distribution of educational attainment may have become more skewed toward the higher earnings ranks. In Fig. 3, panels (e) and (f), we examine the intragenerational associations between parents’ educational attainment rank and earnings rank, where attainment is defined as the sum of the mother’s and the father’s non-compulsory education years (measured at their age 30). Here, we do see an increase in the correlation between attainment rank and earnings rank (panel (f)), and it is primarily the bottom class that to an increasing extent consists of those with lowest education (panel (e)). Existing empirical evidence indicates that the causal effects of parental education on offspring outcomes are modest (Black et al., 2005; Holmlund et al., 2011; Lundborg et al., 2014), but that the personal traits determining educational outcomes are genetically and socially inheritable. In particular, empirical evidence has shown that both patience (time discounting) and self-control – two characteristics generally considered important for educational achievement – are genetically transmitted from parents to offspring; see Hübler (2018) and Willems et al. (2019). A rise in the returns to education in the parent generation may therefore translate into a stronger association between parental earnings rank and offspring education, even without cognitive ability as the mediating factor.

3.1. The composition of parental earnings rank cells: The meritocracy hypothesis

Has the statistical association between parents’ earnings ranks and other inheritable traits that influence offspring’s educational performance become stronger over time? We focus on three variables that may provide some answers to this question; i.e., the parents’ own parental background, the fathers’ cognitive ability (as measured in IQ tests), and the parents’ educational attainment. As we measure mobility in terms of rank associations, all the parental background variables used in this section are measured in terms of ranks within parenthood cohorts (i.e., ranks made among parents to each offspring birth cohort). In cases of ties (two or more parent couples have the same characteristics), we randomize ranks to ensure the exact same uniform distribution for all variables.

We first examine trends in the parents’ economic mobility; i.e., the association between the parents’ own earnings rank and that of their parents (the offspring’s grandparents). We define the parents’ parental earnings rank (PPER) as the average of the father’s and the mother’s parental earnings ranks. For the oldest generation, we measure earnings during age 52-58, and for each grandparent pair pick the three highest out of the 14 potential earnings-years. As shown in Fig. 3, panels (a) and (b), we find no evidence of increasing intergenerational mobility over the parent generations. To the contrary, the correlation between the parents’ earnings rank and that of the parent’s parents’ has displayed an increase over the relevant period, suggesting a decline in intergenerational mobility. In particular, we note that bottom class parents to an increasing extent come from lower class families. These trends speak against the hypothesis that the declining mobility recorded for the offspring generations born after 1985 is an artefact of higher intergenerational mobility experienced by their parents. The stronger association between parental and grand-parental earnings classes suggests that offspring with disadvantaged parents to an increasing extent also have disadvantaged grandparents, which may have contributed to the declining relative performance of bottom class offspring.

To facilitate a more direct examination of a potential movement toward meritocracy in the parent generation, we apply a measure of fathers’ cognitive ability (IQ), as recorded in tests administered by the armed forces to all men at military conscription around age 18/19. As cognitive ability is genetically inheritable and also likely to be of importance for creating a productive learning environment at home, a strengthened relationship between ability and earnings rank in the parent generations could explain the strengthened relationship between parental earnings rank and offspring outcomes as a statistical artefact of a stable intergenerational transmission of genetically or socially inheritable ability traits. IQ test-takers receive an integer score running from 1 to 9, which is a composite of three tests, on arithmetic, word similarities and pattern recognition. We have transformed the test results to uniformly distributed ranks within each fatherhood cohort, and show in Fig. 3, panels (c) and (d), the association between IQ rank and earnings rank has developed for the fathers to offspring born from 1986 through 2005. There is clearly a strong association between IQ and earnings rank. Whereas the average IQ rank in the top earnings decile is around the 65th-70th percentile, the average IQ rank of the bottom earnings decile is around the 33rd percentile. However, there is no indication that the relationship between earnings rank and IQ has become stronger. To the contrary, the correlation between the father’s IQ rank and the parents earnings rank has declined. Whereas the upper decile in the parental earnings distribution has lost some of its IQ premium, there is no clear indication that the bottom earnings decile has fallen more behind.

Finally, we examine trends in the association between earnings rank and educational attainment among parents. Previous evidence has indicated that the returns to education increased over the parent generations covered in this study (Markussen and Roed, 2020), implying that the distribution of educational attainment may have become more skewed toward the higher earnings ranks. In Fig. 3, panels (e) and (f), we examine the intragenerational associations between parents’ educational attainment rank and earnings rank, where attainment is defined as the sum of the mother’s and the father’s non-compulsory education years (measured at their age 30). Here, we do see an increase in the correlation between attainment rank and earnings rank (panel (f)), and it is primarily the bottom class that to an increasing extent consists of those with lowest education (panel (e)). Existing empirical evidence indicates that the causal effects of parental education on offspring outcomes are modest (Black et al., 2005; Holmlund et al., 2011; Lundborg et al., 2014), but that the personal traits determining educational outcomes are genetically and socially inheritable. In particular, empirical evidence has shown that both patience (time discounting) and self-control – two characteristics generally considered important for educational achievement – are genetically transmitted from parents to offspring; see Hübler (2018) and Willems et al. (2019). A rise in the returns to education in the parent generation may therefore translate into a stronger association between parental earnings rank and offspring education, even without cognitive ability as the mediating factor.
Fig. 3. Parents’ characteristics by earnings rank decile and offspring birth year.

Note: In panels (a), (c), and (e), the dotted horizontal lines mark the starting point of each series (the 1986-cohort values). Parents’ PER is the parent’s parental earnings rank, defined as the average of the father’s and the mother’s parents’ ranks. Father’s IQ and parents’ education (at age 30) are also measured in terms of ranks, and are obtained by projecting IQ scores or average education of the two parents onto uniform [0,1] distributions, using a rank lottery among fathers/parents with the same score/attainment. Ranks are in all cases made among parents of the same offspring birth-cohort. In panels (b), (d), and (f), the dashed trend lines are drawn using third order polynomial functions chosen by OLS through the annual data points.
3.2. Economic inequality

The degree of income inequality in Norway is low, compared to most other countries; see, e.g., OECD (2015, p. 56). Yet, it has risen considerably over the past decades (Markussen and Reed, 2022). To examine trends in income inequality relevant for offspring outcomes, we compute for each offspring, the parents’ average total net income during the offspring’s age 7-15. This income concept deviates from the one used to compute parental earnings rank both in its timing (referring to a specific period in the offspring’s lives instead of in the parents’ lives) and in its content (including all incomes over a given period and net of tax instead of gross labor earnings in the best three out of 14 years), as it is designed to represent economic living conditions during adolescence. Fig. 4, panel (a), shows that the income inequality between households belonging to different earnings ranks has indeed increased. In particular, the top earnings decile has pulled away from the others, whereas the bottom class has fallen behind. The rise in income inequality is also pictured in panel (b), showing that the Gini coefficient has increased by approximately 12%.

3.3. School segregation

The degree of school segregation may affect the relationship between parental earnings rank and offspring school performance both through a positive peer effect (arising from socializing with people who are resourceful in terms of human capital and family support) and a negative relative deprivation effect (arising from experiencing a lower relative position, possibly with less attention from teachers and peers); see Markussen and Reed (2023) and references therein. To examine trends in the degree of school segregation, we compute, for each birth cohort, the average parental earnings rank among all final-year students at each junior high school, and compare own parental earnings rank with the school average. Fig. 5 shows that there is a considerable degree of school segregation in Norway, which, given that almost all children attend their local public school, largely reflects residential segregation. There has also been a trend toward increasing segregation, as reflected in the widening gap between the top and bottom classes (panel (a)) and the monotonically increasing correlation between own and co-students parental ranks.

3.4. Public policies related to universal childcare and school quality

The period covered by our analysis was a period of massive expansion of universal high-quality childcare as well as hours taught in primary school. We identify variation in universal childcare coverage and overall teaching hours at the municipal level. Moreover, as a proxy for overall investments in public schools, we compute teacher-pupil ratios. To compute childcare coverage rates, we assign the municipality of residence at birth, whereas to compute school resources, we assign the municipality of residence at age 6. During most of the period covered by our analysis, there were 435 municipalities in Norway, with population sizes varying from just 600 to more than 600,000 inhabitants (average size approximately 12,500). Fig. 6 shows trends in the publically provided learning environment, as experienced by offspring with different parental class backgrounds. Note that the differences related to class background are entirely generated by differences in residential patterns across municipalities – we do not use data on individual exposure. Childcare coverage is for each birth cohort defined as the average coverage rate in the municipality of residence from age 1 through 5. Panel (a) in Fig. 6 shows that the coverage rate increased from 38% for the 1986 cohort to almost 84% for the 2005 cohort, and that the rise has eliminated initial (small) differences in coverage by the municipalities’ socioeconomic compositions. As a result, panel (b) shows that the correlation between parental earnings rank and municipal childcare coverage has declined and reached a level slightly below zero.

Data on hours taught in primary and lower secondary school are obtained from “Grunnskolenes Informasjonssystem” (GSI). For each offspring, we have added up the number of hours taught in the municipality of residence at age six from age seven through age 15, and then computed the annual average. Panel (c) shows that hours taught increased considerably over the cohorts covered by our data. Panel (d) in Fig. 6 indicates that teaching hours are weakly positively correlated with parental earnings rank, with no clear trend in the correlation pattern.

From GSI, we also compute the average teacher-pupil ratio by cohort and municipality. Panel (e) in Fig. 6 shows that this ratio is higher in lower-class municipalities, reflecting the redistributive nature of the Norwegian welfare state; see, e.g., Borge (2010; 2013) for a description of equalization mechanisms in the Norwegian system for allocation of resources across municipalities. The average teacher-pupil ratio declined over the first offspring cohorts in our data, from around 0.063 to 0.059 (corresponding to an increase in the number of pupils per teacher from 17 to 18), and then gradually returned to its initial level. These fluctuations largely reflect (unaccommodated) fluctuations in the sizes of birth cohorts. In addition, whereas the first years of our data period was characterized by centralization and a restructuring of primary schools toward larger entities and thus fewer very small classes, recent trends in the teacher-pupil ratio have been more strongly influenced by the rise in the number of teaching hours.

4. Empirical analysis

To examine the mechanisms behind the observed changes in the association between family background and AdjGPA rank, we set up regression models based on individual data. The purpose of the analysis is to identify the impacts of each of the variables discussed in the previous section, and to examine their roles in explaining the mobility trends reported in Section 2.

4.1. Statistical model

The determination of a rank outcome is a zero-sum game. One person’s gain must be someone else’s loss. To incorporate this property into the regression model, explanatory variables are either included as deviation from the cohort average (such that there is no trend) or with a restriction ensuring that positive and negative rank movements cancel out. Let \(y_{m,t} \) be the adjusted GPA rank obtained by offspring \(i \) belonging to birth cohort \(t \) and municipality \(m \). Let \(x_{i} \) be the vector of parental/family and school peer characteristics (parents’ parental earnings rank, fathers IQ rank, parents’ education rank, parents’ relative income, and average PER among pupils in offspring’s junior high-school) and let \(z_{m} \) be the vector of municipality-by-cohort characteristics (universal childcare coverage, hours taught through compulsory school, and average teacher-pupil ratio). We specify two alternative models, one based on linear interaction terms between PER and time trends and one based on separate effects for the five different class background categories. The linear model has the following structure:

\[y_{m,t} = \beta_0 + \beta_1 x_{i} + \beta_2 z_{m} + \epsilon_{m,t} \]

To avoid too much noise from outliers, we have winsorized incomes at the first and the 99th percentiles.
y_{tmi} = \alpha_t + \delta_t(\text{PER}_{ti} - \text{PER}) + (x_{ti} - \bar{x}_t)\beta_t + (\mu_m - \bar{\mu}) + \varepsilon_{tmi}, \quad (1)

where \((\bar{x}_t, \bar{\mu})\) are the cohort-specific averages of the explanatory variables, \(\text{PER}_{ti}\) is offspring i’s parental earnings rank measured on the \([0,1]\) uniform scale, and \(\text{PER}\) is its cohort average (by construction equal to 0.5). The categorical class model has the following structure:

\[y_{tmci} = \alpha_{tc} + \delta_{tc}(\text{PER}_{ti} - \text{PER}) + (x_{ti} - \bar{x}_t)\beta_{tc} + \theta_m + \sum_{c \neq 4,7} z_{tm} \sigma_c + \zeta_{ctmi}, \quad (2) \]

where \(c\) denotes the five parental earnings class bins defined on the \(\text{PER}\)-distribution (decile 1, deciles 2-3, deciles 4-7, decile 8-9, and decile 10), and with the following set of linear restrictions:

\[\alpha_{t1} + 2\alpha_{t2} + 4\alpha_{t4-7} + 2\alpha_{t8-9} + \alpha_{t10} = 0 \forall t = 1986, \ldots, 2005. \quad (3) \]

The restrictions in (3) ensures that if the expected GPA rank of one class increases, the expected rank of at least one other class must decline.

Both models are specified such that all the effects of observed covariates are time-invariant except for the influence of parental earnings rank. This way, we facilitate a decomposition of the trends in the socioeconomic achievement gaps into something that can be explained by changes in family composition or public policies, given stable structural relationships, and something that cannot.

4.2. Identification and interpretation

The variables included in Eqs. (1) and (2) naturally falls into two...
Fig. 6. Universal childcare coverage (age 1–5), annual teaching hours (age 7–15) and teacher-pupil ratio (age 6–15). Municipality characteristics by parental earnings rank decile and offspring birth year.

Note: In panels (a), (c) and (e), the dotted lines mark the starting point of each series (the 1986-cohort values). Childcare coverage (panels (a) and (b)) is for each birth cohort defined as the average coverage rate in the municipality of residence from age 1 through 5. Annual teaching hours (panels (c) and (d)) and teacher-pupil ratio (panels (e) and (f)) are computed as the average over the relevant ages. The teacher-pupil ratio is measured in full time equivalents (FTE) and excludes teachers assigned to pupils with special needs. In the panels to the right, dashed trend lines are drawn using third order polynomial functions chosen by OLS through the annual data points.
Parental characteristics can largely be considered predetermined. The parameters linked to each characteristic do not have a clean causal interpretation, though, in the sense that they capture effects of independently manipulating one or several particular traits. Instead, we think of parental characteristics as combined representatives of the factors actually measured (earnings, IQ, education, peers) and their latent correlates (genetics, parenting skills, values, networks, etc.). For some of the variables, we can also not rule out reverse causation, as, e.g., children’s schooling experiences may affect parents’ labor supply. Hence, the purpose of including these variables in the regression is not to identify and quantify distinct causal mechanisms related to particular aspects of family characteristics/decisions, but to assess the overall influence of family background and how it has changed over time.

For the second group of variables, we aim at a more direct causal interpretation. Public investments in kindergartens and schools may be important tools in efforts to promote equality of opportunities; hence, it is of considerable interest to identify and quantify their causal impacts. The municipalities’ decisions regarding universal childcare capacity, teaching hours, and teacher-pupil ratios are arguably exogenous with respect to the performance of each individual kid, yet in order to identify their impacts on the class gradient in school performance based on Eqs. (1) and (2), we face a couple of challenges. The first is that achievement gaps may vary across municipalities in a way that exhibits a spurious correlation with resource allocation. The inclusion of municipality-fixed effects in Eqs. (1) and (2) ensures that differences in average achievement levels across municipalities are not erroneously attributed to differences in class composition. However, spatial differences in achievement gaps that are spuriously correlated with differences in resource allocation may still undermine a causal interpretation of estimated effects (as we have not included municipality-by-class-fixed effects in Eqs. (1) and (2)). We assess the empirical relevance of this potential problem through robustness/sensitivity analyses where we add into the models controls for geographically differentiated (time-invariant) class gradients (at the county- or municipal level), essentially removing much of the cross-sectional variation from the sources of identification.

A second challenge is that the allocation of resources to kindergartens and schools may be subjected to some form of reverse causation, e.g., such that poor GPA performance locally triggers demand for more spending. This is probably not a serious problem for universal child care, as the rapid expansion that took place over the 1986–2005 birth cohorts was largely driven by a national policy aimed at reaching full coverage; see Andersen and Havnes (2019). The exogeneity of hours taught and the teacher-pupil ratio in compulsory schools is probably more questionable. However, whereas it appears likely that municipal spending on schools may respond to local changes in average school results, it seems less probable (but not impossible) that there is a direct spending-response to changes in the (unobserved) class gradient in these results. Given that we seek to identify the effects of spending on the social gradient only (and not on the average results), it is only the latter that could undermine the causal interpretation. Moreover, the longitudinal changes in the teacher-pupil ratio are largely driven by fluctuations in cohort sizes, which are not fully accommodated by corresponding year-on-year changes in the number of teachers.

4.3. Results

To examine how the mechanisms discussed in the previous section have affected trends in the estimated influence of parental earnings rank (PER), we include the explanatory variables in Eqs. (1) and (2) in a step-by-step fashion. We do this in four steps, first including only parental background characteristics, then add parents’ relative income level and PER of schoolmates, then add municipality-fixed effects (based on the municipality of residence by age 15/16), and finally add the municipalities’ child-care coverage rates and school characteristics (based on the municipalities of residence by age 0 and 6, respectively), allowing the latter variables to affect offspring differently depending on class background.

The estimated effects of explanatory variables are shown in Table 1, whereas the estimated trends in the (remaining) influence of PER, as captured by δ_t in Eq. (1) and by $\{\alpha_{t1}, \alpha_{t2}\&\alpha_{t3}, \alpha_{t4}, \ldots, \alpha_{t8}\&\alpha_{t9}, \alpha_{t10}\}$ in Eq. (2) are shown in Fig. 7 (for the linear correlation model) and Fig. 8 (for the categorical class model). The trend estimates are normalized to zero for the first birth-cohort (1986) such that the figures illustrate the changes over time in rank-rank correlation and class-specific rank outcomes.

Starting with Fig. 7, we note that the estimated effect of PER (the correlation coefficient α_t) has trended upwards by approximately 0.055; see the solid black line. When we include controls for parental background characteristics, the estimated trend in the intergenerational correlation is dampened, suggesting that parts of the increase can indeed by explained by changes in the composition of earnings rank cells in the parent generation. Considering the results from the categorical model in Fig. 8, it is notable that the changes in the composition of parental earnings rank cells can account for a large fraction of the declining performance for the bottom class. In fact, what Fig. 8 tells us is that both the bottom and the top classes have become less positively selected in terms of inheritable characteristics relevant for offspring school performance. In Appendix Figures A7 and A8, we examine the separate roles of father’s IQ, parents’ education, and parents’ parental earnings rank in accounting for the compositional contribution to the rising achievement gaps. The results indicate that parents’ educational attainment is the important factor, particularly as a driver of declining performance among bottom class offspring.

Moving on to the impacts of parental income levels, the results shown in Table 1 indicate that higher income during the offspring’s childhood (relative to the cohort average) is associated with improvements in educational performance, even conditional on earnings rank and other parental background characteristics. It is also notable that the inclusion of relative income in the regression does not at all change the estimated impacts of the parental background characteristics. As income inequality rose over the period considered here, this contributes to explaining the strengthened associations between parents’ earnings rank and offspring’s educational performance.

Attending a school with higher average PER is associated with slightly lower own performance, hence the trend toward increasing segregation also contributes to steepen the social gradient. At this point, the model based on unadjusted GPA rank gives the complete opposite result; see Appendix Table A1. This is probably the reason why the top class has not pulled apart from the other classes when unadjusted GPA is used for ranking (Fig. A3). The rising segregation illustrated in Fig. 5 has intensified the grade competition among upper class offspring and contributed to level the gradient in unadjusted GPA. Apart from the impact of PER among co-students, it is notable that the estimation

8 The municipality structure has changed during the period covered by our data. In 2020, several of the smallest municipalities were merged, such that the total number of municipalities was reduced from 422 to 356. For the municipality-fixed effects, we use the most recent municipality structure.
The rapid expansion of universal childcare has disproportionally benefited offspring from the lower parental earnings ranks. The point estimates reported in Table 1 (LIN4 and CAT4) imply, for example, that the observed increase in the average age 1–5 public childcare coverage rate of 46 percentage points has reduced the rank-rank correlation by $0.060 \times 0.46 = 0.028$ and the top-to-bottom-class GPA differential by $(0.033 + 0.029) \times 0.46 = 0.029$; i.e., 2.9 percentiles. Our results also indicate that higher teacher-pupil ratio in primary and lower secondary school disproportionally benefits lower class offspring. The point estimates imply that the recent increase in the teacher-pupil ratio by approximately 0.02 has reduced the rank-rank correlation by $0.973 \times 0.02 = 0.019$ and the top-to-bottom-class GPA differential by $(0.378 + 0.551) \times 0.02 = 0.019$; i.e., 1.9 percentiles. By contrast, the number of teaching hours does not appear to influence the GPA ranking of offspring from different parental earnings rank cells; hence, it appears to be the quality rather than the quantity of the teaching that is important for the achievement gap.

The fact that the influence of parents’ earnings rank has increased over time despite public policies that have had large effects in the opposite direction implies that other forces are at work, which have more than offset their opportunity-equalizing effects.

It is notable that the mechanisms examined with our models have had very different impacts on the bottom and top classes. For the bottom class, we see from Fig. 8, panel (a), that changes in the parent composition explain a considerable part of the decline in performance rank, whereas public policies have contributed in the opposite direction. For the top class, most of the mechanisms we have studied here have contributed to a negative trend in rank (panel (e)): Members of the top class have on average become less positively selected in terms of both IQ and education, and the recent expansion of universal childcare and school resources has unequivocally been to their relative disadvantage. Only the rise in economic inequality and school segregation has worked to their advantage, but the influence of these forces have been small and is hardly visible in Fig. 8. Hence, when we control for all our explanatory variables, the GPA rank of offspring from the lower parental earnings rank cells is still significantly lower than that of offspring from the higher parental earnings rank cells.

Table 1

<table>
<thead>
<tr>
<th>Outcome</th>
<th>LIN1</th>
<th>LIN2</th>
<th>LIN3</th>
<th>LIN4</th>
<th>CAT1</th>
<th>CAT2</th>
<th>CAT3</th>
<th>CAT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parents’ PER</td>
<td>0.050</td>
<td>0.045</td>
<td>0.048</td>
<td>0.048</td>
<td>0.050</td>
<td>0.045</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Father’s IQ</td>
<td>0.165</td>
<td>0.164</td>
<td>0.162</td>
<td>0.162</td>
<td>0.166</td>
<td>0.165</td>
<td>0.163</td>
<td>0.163</td>
</tr>
<tr>
<td>Parents’ education rank</td>
<td>0.347</td>
<td>0.344</td>
<td>0.339</td>
<td>0.339</td>
<td>0.346</td>
<td>0.342</td>
<td>0.338</td>
<td>0.337</td>
</tr>
<tr>
<td>Parents’ rel. income</td>
<td>0.012</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.013</td>
<td>0.012</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>Mean school PER</td>
<td>0.037</td>
<td>0.053</td>
<td>0.053</td>
<td>0.053</td>
<td>0.041</td>
<td>0.056</td>
<td>0.056</td>
<td>0.056</td>
</tr>
<tr>
<td>Public childcare cov.</td>
<td>0.039</td>
<td>0.041</td>
<td>0.046</td>
<td>0.046</td>
<td>0.041</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>\times PER (uniform)</td>
<td>−0.060</td>
<td>−0.060</td>
<td>−0.060</td>
<td>−0.060</td>
<td>−0.060</td>
<td>−0.060</td>
<td>−0.060</td>
<td>−0.060</td>
</tr>
<tr>
<td>\times Decile 1</td>
<td>−0.023</td>
<td>−0.023</td>
<td>−0.023</td>
<td>−0.023</td>
<td>−0.023</td>
<td>−0.023</td>
<td>−0.023</td>
<td>−0.023</td>
</tr>
<tr>
<td>\times Deciles 2-3</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>\times Deciles 8-9</td>
<td>−0.010</td>
<td>−0.010</td>
<td>−0.010</td>
<td>−0.010</td>
<td>−0.010</td>
<td>−0.010</td>
<td>−0.010</td>
<td>−0.010</td>
</tr>
<tr>
<td>\times Decile 10</td>
<td>−0.029</td>
<td>−0.029</td>
<td>−0.029</td>
<td>−0.029</td>
<td>−0.029</td>
<td>−0.029</td>
<td>−0.029</td>
<td>−0.029</td>
</tr>
<tr>
<td>Annual teaching hours</td>
<td>0.013</td>
<td>0.014</td>
<td>0.013</td>
<td>0.013</td>
<td>0.014</td>
<td>0.013</td>
<td>0.013</td>
<td>0.013</td>
</tr>
<tr>
<td>\times PER (uniform)</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>\times Decile 1</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>\times Deciles 2-3</td>
<td>−0.009</td>
<td>−0.009</td>
<td>−0.009</td>
<td>−0.009</td>
<td>−0.009</td>
<td>−0.009</td>
<td>−0.009</td>
<td>−0.009</td>
</tr>
<tr>
<td>\times Deciles 8-9</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>\times Decile 10</td>
<td>−0.013</td>
<td>−0.013</td>
<td>−0.013</td>
<td>−0.013</td>
<td>−0.013</td>
<td>−0.013</td>
<td>−0.013</td>
<td>−0.013</td>
</tr>
<tr>
<td>Teacher-pupil ratio</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>\times PER (uniform)</td>
<td>−0.973</td>
<td>−0.973</td>
<td>−0.973</td>
<td>−0.973</td>
<td>−0.973</td>
<td>−0.973</td>
<td>−0.973</td>
<td>−0.973</td>
</tr>
<tr>
<td>\times Decile 1</td>
<td>0.378</td>
<td>0.378</td>
<td>0.378</td>
<td>0.378</td>
<td>0.378</td>
<td>0.378</td>
<td>0.378</td>
<td>0.378</td>
</tr>
<tr>
<td>\times Deciles 2-3</td>
<td>0.417</td>
<td>0.417</td>
<td>0.417</td>
<td>0.417</td>
<td>0.417</td>
<td>0.417</td>
<td>0.417</td>
<td>0.417</td>
</tr>
<tr>
<td>\times Deciles 8-9</td>
<td>−0.330</td>
<td>−0.330</td>
<td>−0.330</td>
<td>−0.330</td>
<td>−0.330</td>
<td>−0.330</td>
<td>−0.330</td>
<td>−0.330</td>
</tr>
<tr>
<td>\times Decile 10</td>
<td>−0.551</td>
<td>−0.551</td>
<td>−0.551</td>
<td>−0.551</td>
<td>−0.551</td>
<td>−0.551</td>
<td>−0.551</td>
<td>−0.551</td>
</tr>
<tr>
<td>Municipality-fixed eff.</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.250</td>
<td>0.251</td>
<td>0.256</td>
<td>0.256</td>
<td>0.256</td>
<td>0.256</td>
<td>0.256</td>
<td>0.256</td>
</tr>
<tr>
<td>No. observations</td>
<td>1043525</td>
<td>1043525</td>
<td>1043525</td>
<td>1043525</td>
<td>1043525</td>
<td>1043525</td>
<td>1043525</td>
<td>1043525</td>
</tr>
</tbody>
</table>

Note: The regressions also include dummy variables indicating missing values of father’s IQ (1.9 % of observations), parents’ PER (2.2 %), public childcare coverage (2.4 %), public school resources (1.1 %).

Results are similar for rank outcomes based on adjusted and unadjusted GPA; compare Table 1 and Table A1.
variables, we end up with a much larger unexplained trend in favor of the top class than what we have seen in observed outcomes.

The rising (unexplained) association between parental earnings rank and offspring school performance is likely to foreshadow declining intergenerational earnings rank-rank mobility in the future. This is not only because GPA rank at age 15/16 is highly correlated with earnings rank at age 28-34, as shown in appendix figs. A5 and A6, but also because we have seen indications, at least for the parent generations, that the intragenerational relationship between education and earnings is on the rise (Fig. 3, panels (e) and (f)). While it is too early to investigate whether or not this trend will continue for the offspring generations examined in the present paper, we show in appendix Fig. A9 (based on auxiliary data) that it indeed has continued for cohorts born up to around 1985, with no sign of coming to a halt.

4.4. Robustness

To address the concern that local class gradients in school performance may correlate spuriously with childcare coverage and school resources, we extend the models with controls that incorporate such cross-sectional differences. For the linear models, this is done by adding interaction terms between parental earnings rank and dummy variables indicating either county or municipality of residence. For the categorical model, it is done by adding class-by-county or class-by-municipality fixed effects. The motivation for using counties in this context is that many of the municipalities in Norway are extremely small, with just a handful of students in the relevant age group; hence, separate class gradients for each municipality may absorb much of the required identifying variation in public policies. By using the 19 counties instead,
we account for regional variation in the class gradients in a less “costly” fashion.

The robustness results are presented in Appendix Table A3. When we allow for county-specific gradients (Models LIN5 and CAT5), the estimated effects of childcare coverage and the teacher-pupil ratio on the class gradients remain stable (or increases). With municipality-specific gradients, the point estimates become smaller and the standard errors become considerably larger (LIN6 and CAT6). Yet, viewed as a whole, the main conclusions seem robust. Higher childcare coverage and a larger teacher-pupil ratio significantly reduces the achievement gap between pupils from high and low class families.

5. Discussion and concluding remarks

Based on population data from Norway, we have shown that the association between parents’ earnings rank and early school performance has become stronger over the past decades. We have provided evidence that the rising influence of parental earnings rank is not an artefact of a general trend toward meritocracy and increased mobility in the parent generations, which could have resulted in a tighter relationship between earnings rank and (inheritable) ability in the parent generation. To the contrary, we show that intergenerational mobility declined slightly over the parent cohorts and that the association between parents’ earnings rank and father’s IQ became slightly weaker. On the other hand, we do find that earnings rank became more closely associated with educational attainment among parents, suggesting that the returns to education increased and thus made educational attainment a more important determinant of earnings rank. To the extent that educational achievement is socially or genetically inherited, even conditional on cognitive ability, this may explain parts of the rising influence of parental earnings rank on offspring outcomes. However, the increased role of parental education has been more than offset by the huge expansion of publicly provided childcare and, more recently, the rise in the teacher-pupil ratio in primary and lower secondary schools.

We show that these policies have been to the relative advantage of bottom and lower class offspring.

Viewed as a whole, our analysis has not been able to explain why the influence of family background has risen so much. To the contrary, the estimated joint influence of all the mechanisms and variables examined in this paper has been to reduce the influence of parental earnings rank, whereas the observed association has increased. Hence, our analysis has added to an unexplained force of declining intergenerational mobility. It appears that policies aimed at equalizing offspring opportunities have to deal with fundamental societal trends working in the opposite direction.

In a paper documenting the widening achievement gap between offspring from rich and poor families in the U.S., Reardon (2011) referred to data showing that parents have become increasingly focused on children’s cognitive development during the last 50 years. There is now ample empirical evidence from many countries indicating that parents have become more involved in their children’s lives. Doepke and Zilibotti (2019) compare time-use data from six different countries (Canada, Spain, Italy, UK, Netherlands, and the US), and show that parents’ time spent with their kids has increased sharply over the past decades in all countries. In the US, for example, hours per week spent by mothers and fathers on childrearing increased from 10 (mother) and 4 (father) around 1990 to 14 (mother) and 7 (father) in 2011, and the increase was larger for parents with high education (Doepke and Zilibotti, 2019, pp. 55–57). Parents’ time spent directly on helping their kids with homework has increased from 17 minutes per week in the mid-1970s to more than an hour and a half in 2012. Based on two recent meta-analyses, Curran and Hill (2022, p. 107) argue that increased parental involvement reflects a response to “escalating societal competitiveness, individualism, inequality, and pressures to excel at school and college.”

Time-use data from Norway indicate more stability in parents’ average time spent on childrearing (Egge-Hoveid and Sandnes, 2013), yet there are indications that the difference in involvement between parents with high and low education has increased, particularly among fathers (Ellingsæter and Kitterød, 2021). There is also evidence that the nuclear family plays an increasing role in the lives of Norwegian adolescents more generally. For example, according to the Norwegian youth survey, the fraction of 13-18-year olds that spent at least two evenings out with friends during the last week has declined from 62 % in 2002 to 34 % in 2018-20, whereas the fraction who spent at least two evenings home alone with mother, father, and/or siblings increased from 54 % to 73 % (Bakken et al., 2021).

Irrespective of the precise mechanism, the rising influence of family background on early school performance represents a challenge for policies aimed at achieving equal opportunities for all. Our findings suggest that policies designed to expand access to publicly provided childcare have successfully contributed to leveling the playing field, yet been insufficient to offset other and more powerful trends contributing to lower intergenerational mobility. Our results also indicate that investment in school quality (in our model represented by the teacher-pupil ratio) has the potential for leveling the playing field.

Declaration of Competing Interest

The authors declare that there are no conflicts of interest in relation to this paper.

Data availability

The data that has been used is confidential.

Acknowledgements

This research has received support from the Norwegian Research Council (grants # 280350 and 300917). Thanks to Astrid Marie Jorde Sandssr and two anonymous referees for comments to an earlier draft. Administrative registers made available by Statistics Norway have been essential. Data on ability scores have been obtained by consent from the Norwegian Armed Forces, who are not responsible for any of the findings and conclusions reported in the paper.
Appendix

Fig. A1, Fig. A2, Fig. A3, Fig. A4, Fig. A5, Fig. A6, Fig. A7, Fig. A8, Fig. A9, Table A1, Table A2

Fig. A1. The statistical association between parental earnings rank (PER) and standard-adjusted offspring GPA rank for offspring born 1986-2005. By sex.

Note: In panels (a) and (c), the dotted horizontal lines mark the starting point of each series (the 1986-cohort values). In panels (b) and (d), the dashed trend line is drawn using a third order polynomial function chosen by OLS through the annual data points.
Fig. A2. The statistical association between parental earnings rank (PER) and standard-adjusted offspring GPA rank for offspring born 1986-2005. By ranking algorithm.

Note: Panels (a) and (b) repeat results from the baseline model in Fig. 2. The alternative rankings are based on the following earnings/incomes: Alternative A: Best 3 earnings years for both mother and father during age 34-40. Alternative B: Sum of all parental earnings age 34-40. Alternative C: Net income for both mother and father during the child’s age 7-15. In panels (a), (c), (e) and (g) the dotted horizontal lines mark the starting point of each series (the 1986-cohort values). In panels (b), (d), (f) and (h) the dashed trend line is drawn using a third order polynomial function chosen by OLS through the annual data points.
Fig. A3. The statistical association between parental earnings rank (PER) and unadjusted offspring GPA rank (offspring born 1986-2005, panels (a) and (b)) and exam results rank (offspring born 1986-2003, panels (c) and (d)). Note: PER from baseline model. Exam results rank is based on a residual from a regression of written exam result on subject-dummy variables. In panels (a) and (c), the dotted horizontal lines mark the starting point of each series (the 1986-cohort values). In panels (b) and (d), the dashed trend line is drawn using a third order polynomial function chosen by OLS through the annual data points.

Fig. A4. The GPA standard adjustment factor and its association with parental earnings rank. Offspring born 1986-2005. Note: In panel (a), the dotted horizontal lines mark the starting point of each series (the 1986-cohort values). In panel (b), the dashed trend line is drawn using a third order polynomial function chosen by OLS through the annual data points.
Fig. A5. Gender-specific associations between GPA rank at age 15/16 and earnings rank age 28-34 for offspring born 1986-2005.
Note: The slope lines through the mean points show the linear regression line from a regression with adult earnings rank as outcome and Adjusted GPA rank as explanatory variable. Slope coefficient equals 0.312 (0.006) for men and 0.469 (0.006) for women (standard errors in parentheses).

Fig. A6. Associations between adjusted and unadjusted GPA rank at age 15/16 and earnings rank age 28-34 for offspring born 1986-2005.
Note: The slope lines through the mean points show the linear regression line from a regression with adult earnings rank as outcome and Adjusted GPA rank as explanatory variable. Slope coefficient equals 0.389 (0.005) for adjusted and 0.397 (0.006) for unadjusted GPA rank (standard errors in parentheses).
Fig. A7. Rank-rank correlation under alternative control variable sets.
Note: The figure shows estimated linear associations between offspring GPA rank, adjusted for local grading standards, and parental earnings rank ($\hat{\delta}_t$ from Eq. (1)) after controlling for separate sets of family background characteristics.

Fig. A8. Expected offspring GPA rank by parental earnings rank under alternative control variable sets.
Note: The figures show estimated expected offspring GPA rank, adjusted for local grading standards, by parental earnings rank (\hat{g}_n from Eq. (2)) after controlling for separate sets of family background characteristics.
Fig. A9. Correlation between education rank and earnings rank for persons born 1975-1985

Note: Education ranks are based on highest obtained education by age 30, whereas earnings rank is based on the highest three annual earnings obtained during age 31-35

Table A1

Estimation results for linear and categorical models (standard errors in parentheses) Dependent variable: Unadjusted GPA rank.

<table>
<thead>
<tr>
<th></th>
<th>LIN1</th>
<th>LIN2</th>
<th>LIN3</th>
<th>LIN4</th>
<th>CAT1</th>
<th>CAT2</th>
<th>CAT3</th>
<th>CAT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parents’ PER</td>
<td>0.036</td>
<td>0.042</td>
<td>0.044</td>
<td>0.045</td>
<td>0.037</td>
<td>0.042</td>
<td>0.045</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Father’s IQ</td>
<td>0.160</td>
<td>0.161</td>
<td>0.160</td>
<td>0.160</td>
<td>0.161</td>
<td>0.162</td>
<td>0.162</td>
<td>0.162</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Parents’ ed. rank</td>
<td>0.343</td>
<td>0.342</td>
<td>0.342</td>
<td>0.342</td>
<td>0.341</td>
<td>0.341</td>
<td>0.341</td>
<td>0.340</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Parents’ rel. income</td>
<td>0.011</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.012</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Mean school PER</td>
<td>−0.092</td>
<td>−0.066</td>
<td>−0.052</td>
<td>−0.087</td>
<td>−0.063</td>
<td>−0.048</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.016)</td>
<td>(0.014)</td>
<td>(0.024)</td>
<td>(0.016)</td>
<td>(0.015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public childcare cov.</td>
<td>−0.012</td>
<td></td>
<td></td>
<td></td>
<td>−0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.018)</td>
<td></td>
<td></td>
<td>(0.018)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>× PER (uniform)</td>
<td></td>
<td>−0.056</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>× Decile 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.027</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.014)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>× Deciles 2-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.010)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>× Deciles 8-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−0.011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>× Decile 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−0.025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.014)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual teaching hours</td>
<td></td>
<td>−0.000</td>
<td></td>
<td></td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.005)</td>
<td></td>
<td></td>
<td>(0.005)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>× PER (uniform)</td>
<td></td>
<td>−0.006</td>
<td></td>
<td></td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.009)</td>
<td></td>
<td></td>
<td>(0.008)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>× Decile 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.007)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>× Deciles 2-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.006)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>× Deciles 8-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−0.014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.007)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher-pupil ratio</td>
<td>0.882</td>
<td></td>
<td></td>
<td></td>
<td>0.884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.077)</td>
<td></td>
<td></td>
<td></td>
<td>(0.092)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>× PER (uniform)</td>
<td>−0.489</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
Table A1 (continued)

<table>
<thead>
<tr>
<th>LIN1</th>
<th>LIN2</th>
<th>LIN3</th>
<th>LIN4</th>
<th>CAT1</th>
<th>CAT2</th>
<th>CAT3</th>
<th>CAT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.158)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Decile 1
- Deciles 2–3
- Deciles 8–9
- Decile 10

Municipality-fixed eff.
No: Yes
R-squared
0.231 0.233 0.239 0.239
No. observations
1050794 1050794 1050794 1050794

Note: The regressions also include dummy variables indicating missing values of father’s IQ (1.9 % of observations), parents’ PER (2.2 %), public childcare coverage (2.4 %), public school resources (1.1 %).

Table A2

Estimation results for linear and categorical models (standard errors in parentheses) Dependent variable: Adjusted GPA rank.

<table>
<thead>
<tr>
<th>LIN4</th>
<th>LIN5</th>
<th>LIN6</th>
<th>CAT4</th>
<th>CAT5</th>
<th>CAT6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Parents’ PER
- Father’s IQ
- Parents’ education rank
- Parents’ rel. income
- Mean school PER
- Public childcare cov.
- PER (uniform)
- Decile 1
- Deciles 2–3
- Deciles 8–9
- Decile 10
- Annual teaching hours
- PER (uniform)
- Decile 1
- Deciles 2–3
- Deciles 8–9
- Decile 10
- Teacher-pupil ratio
- PER (uniform)
- Decile 1
- Deciles 2–3
- Deciles 8–9
- Decile 10

Municipality-FE.
Class-by-county grad. or FE
Class-by-municip grad. or FE
R-squared
No. observations
1043525 1043525 1043525 1043525 1043525 1043525 1043525

Note: LIN 4 and CAT for are repeated from Table 2. The regressions also include dummy variables indicating missing values of father’s IQ (1.9 % of observations), parents’ PER (2.2 %), public childcare coverage (2.4 %), public school resources (1.1 %).