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It is shown that the standard Susceptible Infectious Recovered model 
of an epidemic implies that there for a large set of epidemic parameter 
values there will be increasing returns to scale if the objective is to limit 
the economic cost of infection. The explanation is that if an epidemic has 
a high basic reproduction number, a given amount of social distancing 
will not have much effect. The same amount may however be very 
effective if the reproduction number is lower (but still larger than one).
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Introduction. 

There is a considerable literature on the economic management of epidemics. 

Historically this literature has to a considerable extent been mostly, but not 

exclusively, concerned with vaccination. As is to be expected, results will depend 

on the biological characteristics of the pathogen at hand. A very important 

distinction is between endemic diseases and transient epidemics. Endemic 

diseases, although subject to episodic spikes, require a different policy perspective 

than transient epidemics, see Goldman and Lightwood (2002), Barrett and Hoel 

(2006) for discussions of endemic diseases. Here the focus is on transient 

epidemics such as the common flu and (hopefully) Covid-19. Several articles 

analyze the management of transient epidemics by utilizing the well established 

Susceptible-Infectious-Recovered (SIR) model, developed by McKendrick and 

Kermack (1927), see e.g. Morton and Wickwire (1974), Francis (1997) (2004) and 

Nævdal (2012). Several papers have examined the effect of policy interventions. 

E.g has Brito et al. (1991) and Geoffard and Philipson (1996) examined 

vaccination policies. Gersovitz and Hammer (2004) examined the case of several 

instruments. Nævdal (2012) identified the possibility of increasing returns to 

scale on pre outbreak vaccination efforts. For some parameter values and stocks 

of unvaccinated individuals in the population it turned out that the marginal 

value of vaccination is an increasing function of the number of vaccinated, i.e. 

increasing returns to scale. Nævdal (2012) explained this with a “brush fire” 

effect where a vaccination in a very fast spreading epidemic has little effect unless 

followed up with more vaccination. Here I show that the same argument applies 

to social distancing as a policy measure. 

 

The analysis is done with a very simple deterministic model in order to highlight 

how the epidemic dynamics may imply increasing returns to scale. 
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The SIR - model 

The model has 3 variables. x is the number of susceptibles, y is the number of 

sick and z is the number of individuals who are immune rate. It is assumed that 

the population is a constant n so that x + y + z = n. From hereon n is 

normalized to 1. The infection rate is proportional to the product of the number 

of infected and the number of susceptibles. An individual can acquire immunity 

by recovering from the disease. The equations of motion are given by: 

y

 

  (1) x xy

y

y

  (2) y xy

  (3) z

 

Here  and  are positive constants.  has the interpretation that –1 is the 

expected duration of the disease for an infected. Thus the duration of the 

epidemic for an infected individual is exponentially distributed with intensity .  

is the contact rate and is a product of the transmissibility of the pathogen and 

the number of interactions an individual has per day. The basis reproductive 

number R0 is given by 

   (4) 1
0

R

This is roughly the number that an infected person will infect in the beginning of 

the epidemic. In the basic SIR model, this number together with initial values of 

state variables will determine the path of the epidemic.  

 

Since + y  + z  = 0 it holds that x(t) + y(t) +z(t) = x(0) + y(0) +z(0) = 1 for 

all t. Also, the system has an infinite number of steady states. Any triple (x, y, z) 

= (x*, 0, z*) such that x* + z* = 1 is a steady state. There are no steady states 

with positive values of y. 

x

 

The initial conditions are x(0) = 1 –  and y(0) = . From (2) it is immediately 

clear that the epidemic reaches it’s apex, maxt y(t) when x = 1
0R . We can 
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derive a single differential equation for y as a function of x. We denote this 

function Y(x). 

 
1

01 , 1
Ry xy y

y Y x Y
x xy x

  (5) 

Solving (5) yields: 

   (6) 1
01 ln ln 1Y x x R x

 

The solution in (6) shows how x and y moves in tandem during an epidemic. 

Note that as long as  is small, it has very little impact on the path. In the 

absence of any interventions the number of individuals who will be susceptible 

after an epidemic is given by the value x, denoted xmin such that: 

   (7) 1
min min 0 min1 ln ln 1Y x x R x 0

0

We now modify (4) in order to account for social distancing measures. Over a 

time interval [0, T] where T we have that 

   (8) 0R R h

Here h is some, possibly constant, function of time over the interval [0, T] where 

T < . For t > T we have that h = 0. One way of interpreting h is simply as 

the reduction in the number of potentially infective social interactions per day, 

scaled to be in the same units as R0. Thus the definition of social distancing used 

here is different than that employed by e.g Gollier (2020) where a fraction of the 

population is in lock down. 

 

 It is easy to show that for any R0 > 1 there is an interval of steady states S = 

 that is the set of feasible endpoints for the epidemic. xmin represents a 

worst case scenario where the maximum number of individuals, 1 – xmin, have 

been infected. With interventions, the medically best possible outcome is that the 

disease ends with 1 –  having been infected. If we restrict h to constant 

functions over we can identify xh which is, roughly, the long run number of people 

never infected given a constant value of h until T. Whenever x > , the 

epidemic will always reappear when h is set equal to 0. xh is determined by a 

modification of 

1
min 0,x R

1
0R

1
0R

(7). 

   (9) 1
01 ln ln 1h h hY x x R h x



COVID ECONOMICS
VETTED AND REAL-TIME PAPERS

It is not possible to find an explicit solution that solves (9) for xh as a function of 

h.1 However it is straight forward to plot xh as a function of h for given values of 

R0 and . This is done in Figure 1. 

 
Figure 1. The long run stock of remaining susceptibles, xh, as a function of social distancing 

 

The important thing to note about the relationship between h and xh is that xh is 

a convex function of h, implying that the higher h, the more effective is a 

marginal increase in h at reducing the number of infected during the course of an 

epidemic. This is confirmed in Figure 2 where the time paths of x for an epidemic 

with R0 = 2.5 is plotted. The effect of setting h = 0.1 has a negligible effect. x0, 

that is xh when h = 0, is 0.89. x0.1 = is 0.88, a reduction of 1 percentage point. 

However if h is set to 1 and then further increased to 1.1, we have that x1.5 = 0.58 

and x1.1 = 0.51, a reduction of 7 percentage points. 

Herein lie the explanation for increasing returns to scale. When R0 is large, 

marginal increases in social distancing simply has very little effect on the 

outcome of the epidemic. When R0 is small or substantial social distancing is in 

                                     
1 An explicit solution can be found using the Lambert function. 
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effect, marginal increases in social distancing has a much larger effect on the 

epidemic outcome. 

 

 
Figure 2. The stock of susceptible individuals over time at different levels of social distancing. 

 

The economic benefits of social distancing 

To see how social distancing affects the economic costs of an epidemic we can 

change the model so that R0 becomes a function of distancing efforts: 

   (10) 

1
0

0

R h

h R h

We write  as a function of distancing efforts. Thus the epidemic equations for x 

and y may be written:  

   (11) 0

0

, 0 1

. 0

x R h xy x

y R h xy y y

Here h is a measure of social distancing. Then a very simple model of an epidemic 

is: 
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   (12) 
0

rtV h wye dt

Here wy is the economic surplus lost if y individuals are ill for a unit of time. In 

the simulation below w is normalized to one. Let us examine the benefits of social 

distancing without examining the costs by doing a thought experiment. Assume 

that we fix  so that h > 0 for x  xcrit. When x goes below xcrit we set h = 0. The 

benefit from such an intervention is shown in Figure 3. 

 
Figure 3. Relationship between the cost of , h. It is clear that the benefits exhibit increasing 

returns to scale for h in the interval 0 to 0.3. Thereafter there are diminishing returns that 

quickly go to zero. Here xcrit is set to 0.1.  

 

The specification of the epidemic cost is very simple. In particular they are linear 

with respect to the stock of infected. This is unlikely to be the case when an 

epidemic is serious with respect to mortality, infectiveness and health outcomes. 

If the instantaneous marginal cost of y depends on the magnitude of y, this may, 

paradoxically, imply returns to scale become diminishing. This is in line with 

Nævdal (2012) who found that more serious epidemics exhibited diminishing 

returns to scale on vaccination efforts. 
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Summary and policy implications 

A transient epidemic is in many ways like a brush fire. A high R0 has the same 

effect as a severe drought has on brush land. The drier the vegetation, the more 

vegetation is consumed, the quicker is a specific area consumed and the less is the 

effect of a bucket of water. This has some implications for economic management. 

A very dry area may be a lost cause. However, if it pays to throw one bucket of 

water on the fire it pays even more to throw a second bucket. The same goes for 

epidemics. There may be increasing returns to scale to social distancing and other 

efforts to control the epidemic. The results have some very clear policy 

implications.  

1) With increasing returns to scale, a corner solution, i.e. no distancing, may 

be optimal. 

2) If it pays to apply social distancing as a policy, then it is often the case 

that if it pays to do a little it pays even more to do a lot. 

3) An issue not covered in the present paper is what happens when 

individuals respond behaviorally to an epidemic threat by choosing to 

socially distance themselves, Garibaldi et al (2020). Does this negate the 

need for public intervention? In general, the answer is no as the individual 

only receives part of the benefits from their own behavior. Additionally, 

the analysis here indicates that for some parameter values increasing 

returns to scale implies that individual self distancing may increase the 

value of public efforts. 

 

It should also be noted that if alternative measures of social distancing are 

employed, this will affect results. The approach to modeling social distancing 

employed by Gollier (2020) implies that  becomes a quadratic function of the 

fraction of people in lockdown. This would likely strengthen the results in the 

present paper. 
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The results underscore the need for economic analysis to be founded on a solid 

understanding of the mathematical dynamics of an epidemic. 
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