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1 Introduction

Reallocation of resources from old, ineffi cient firms to new firms with superior technology

is often considered to be a dynamo in market economies; through creative destruction

the exit of firms is a means to ensure growth and prosperity. New firms have to invest

to build up an optimal stock of capital, but new firms are also characterized by a high

exit rate. In our data set, which covers firms in Norwegian manufacturing industries over

the period 1994—2012, the average share of 1-year old firms that exited during the next

3 years was 17 percent, compared with 7—8 percent for 10-year old firms. For a rational

(new) firm, choosing the investment profile over time is interrelated with the decision of

whether to exit or continue production. Still, most empirical studies solely examine either

exit or investment. This paper derives a theory-based model of exit and investment under

uncertainty that is structurally estimated on Norwegian data for start-up firms.

In our dynamic model, the firm’s investment decision is determined simultaneously

with the decision of whether to exit. This is in contrast to the literature. First, several

models of investment under uncertainty rule out the possibility to exit; for example, see

Dixit and Pindyck (1994; Chapter 7), Abel and Eberly (1994; 1996), and Bloom, Bond

and van Reenen (2007). Second, other contributions consider the value of exit —the “scrap

value”—as exogenous, for example, see Olley and Pakes (1996), Levinsohn and Petrin

(2003), Dunne et al. (2013), and Ryan (2012). Finally, some studies on exit have no

explicit investment decision; for example, see Pakes et al. (2007) and Aguirregabiria and

Ho (2012).

While modeling of exit may seem simple — according to standard economic theory

negative profitability is the key reason for firms to exit — accounts data indicate that

the exit behavior of Norwegian manufacturing firms may be more complicated: for the

period 1994—2012, the data reveal that i) 27 percent of firms that exited had positive

profit (here defined as operating surplus less capital costs) every year before they exited;

ii) there is no clustering of negative profitability shocks just prior to exit —around 65

percent of the firms that exited had positive profit in the last year prior to exit; and iii)

firms may continue production even though they repeatedly experience negative profit; 30

percent of the firm-year observations for the non-exiting firms —one observation for each

firm in each year —had negative profit. These observations raise the following questions:
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Is profitability of key importance for explaining firm exit? What cause firms to exit?

What are the characteristics that distinguish firms that exit from those that continue

production? Thus, one purpose of the present paper is to address these questions by

estimating a dynamic structural model.

Estimation of parameters in dynamic structural models is challenging. Maximum-

likelihood estimation is computationally demanding if firms are assumed to take the

strategy of their competitors into account; for example, see Ryan (2012). Even if strategic

interaction is not considered, it still may be diffi cult to estimate dynamic structural mod-

els of firms’behavior because there may be no numerically tractable criterion function

that can form the basis for estimation. Some papers therefore apply the simulated method

of moments to estimate structural parameters; for example, see Cooper and Haltiwanger

(2006) and Asphjell et al. (2014). Here the econometrician selects a set of moments ad

hoc and let the parameters be determined such that the distance between the data mo-

ments and the corresponding model-based (simulated) moments are minimized according

to some metric.

Similar to the papers referred to in the previous paragraph, we cannot derive a like-

lihood function that is numerically tractable. However, instead of using the simulated

method of moments (with its ad hoc elements) we introduce an auxiliary model that

closely mimics the properties of the underlying structural model. In our auxiliary model,

a latent variable in the structural model is replaced with a statistic. The likelihood func-

tion of the auxiliary model —henceforth referred to as the quasi-likelihood function —can

be derived and quasi-maximum likelihood estimates are then combined with the structural

model through simulations to estimate structural parameters.

The idea of combining estimation of an auxiliary model with simulations from an

underlying “true”model is called indirect inference. This method was proposed by Smith

(1993) and developed further into a general methodology by Gourieroux et al. (1993). In

Gallant and Tauchen (1996), a related method was proposed, namely to use simulation

techniques to match scores of a quasi maximum-likelihood procedure with a Generalized

Method of Moments (GMM) approach when the scores are diffi cult to calculate. The

method of Gallant and Tauchen has been referred to as the Effi cient Method of Moments

(EMM). In the present, paper we draw on Gallant and Tauchen (1996). Indirect inference
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seems appropriate for our study because it is not possible to compute the exact likelihood,

whereas simulation of the model is feasible.

Indirect inference is commonly used in financial econometrics; some examples include

stochastic volatility-, exchange rate-, asset price- and interest rate modeling; for example,

see Andersen and Lund (1997), Andersen et al. (1999), Bansal et. al. (2007), and

Raknerud and Skare (2012). Other examples of application of indirect inference include

Magnac et al. (1995) and An and Liu (2000) on labor market transitions, Nagypál (2007)

on learning by employees, Collard—Wexler (2013) on the role of demand shocks in the

US ready-mix concrete industry, and Li and Zhang (2015) on bidding by heterogeneous

actors. Typically, these studies draw on indirect inference because the likelihood function

cannot be derived.

We make four contributions to the literature. First, we present a novel theory-

consistent econometric model that determines both exit and investment within the frame-

work of stochastic dynamic programming. We do so by extending the Markovian discrete

choice model of Rust (1994) by allowing for a continuous decision variable —investment

—in addition to a discrete decision variable —whether or not to exit. In particular, we

replace the standard simplifying assumption of a state-independent scrap value, see dis-

cussion above, by modeling a trade-off between the value of installed capital if production

is continued and the value of installed capital if the firm exits —this is how we make the

decision to exit truly endogenous.

Second, we present a solution to the main diffi culty in applying indirect inference (and

more generally, simulation-based inference) in discrete or discrete-continuous choice mod-

els, namely that the simulated trajectories are discontinuous functions of the structural

parameters. Our solution does not rely on smoothing-functions such as the Generalized

Indirect Inference (GII) method of Bruins et al. (2015), but utilizes the "smoothing

properties" of the conditional expectation operator, given the simulated state variables.

Third, we contribute to the empirical literature on the relationship between profitabil-

ity and exit. There is surprisingly little evidence about this relationship. Some studies

provide descriptive statistics on exit rates, see Dunne et al. (1988) for US manufacturing

industries and Disney et al. (2003) for UK manufacturing. Others use reduced form pro-

bit models to examine how profit components influence firm exit; for example, see Olley
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and Pakes (1996) and Foster et al. (2008). We draw on a rich data set for Norwegian

manufacturing firms, and show that it is the cumulated effect over several years of a high

risk to exit that distinguishes firms that exit from those that continue production. If, over

a long period of time, the expected value of continuing production is low relative to the

expected value of exit, the firm has a high probability to exit.

Fourth, we contribute to the literature on the cost of capital adjustment. In the empir-

ical literature, the degree of cost of adjustment has been highly debated; two prominent

examples are Hall (2004), who finds small adjustment-cost parameters, and Cooper and

Haltiwanger (2006), who conclude that there is significant cost of adjustment. We find

significant, but moderate, cost of capital adjustment.

The remainder of this paper is organized as follows: In Section 2, we identify stylized

facts about the firms in the data set; these are start-up firms in Norwegian manufactur-

ing industries (1994—2012). Our choice of firms reflects that the exit probability of an

incumbent firm may differ systematically from that of a new firm due to self-selection;

surviving firms are not a random sample of the population of all firms. In the literature,

this selection problem has largely been ignored.

In Section 3 we introduce a production model —production requires input of labor,

materials (including energy), and capital —and in Section 4 we explain how stochastic

dynamic programming can be used to simultaneously determine (in each period) whether

the firm will exit and how much the firm will invest if it does not exit. In Section 5, we

discuss the stochastic specification of the auxiliary econometric model — it has exactly

the same parameters as the data-generating model —and we derive the quasi-likelihood

function. In Section 6, we show how to simulate data from the structural model. The

parameter estimates are reported in Section 7; all parameter estimates have the expected

sign and are statistically significant. In Section 7, we also investigate simplifying model

assumptions. Finally, in Section 8 we present our conclusions.

2 Data

Our main data source is a database from Statistics Norway based on register data —

the Capital database —which covers the entire population of Norwegian limited liability

companies in the manufacturing industry. The main statistical unit in this database is
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the firm: A firm is defined as “the smallest legal unit comprising all economic activities

engaged in by one and the same owner”. We use data from the Capital database for the

period 1993—2012.

A firm is defined to have exited in year t if it is not recorded in the Capital database in

t+1 (or later) and the firm is registered by the end of t+2 as either bankrupt, compulsory

liquidated1 or having closed down for an unspecified reason according to the Norwegian

Central Register of Establishments and Enterprises.2 We limit attention to new firms that

were operative in at least 2 years. For each firm, we use the first observation year solely

to obtain information about the initial stock of capital. Note that a firm is removed from

the Capital database if it is no longer classified as belonging to the manufacturing sector.

We only include firms that are single-plant firms in the start-up year because newly

established multi-plant firms are likely to be a continuation of existing establishments

under a new organization number (the firm identifier). In the period 2004—12, about 90

percent of the start-up manufacturing firms were single-plant units. These firms accounted

for about two-thirds of total employment of all start-ups in their first year. Finally, if a

(single-plant) firm A acquires a (single-plant) firm B, then the new multi-plant firm A is

kept in the data (whereas B is of course removed).

The Capital database contains annual observations on revenue, wage costs, interme-

diate expenses (including energy), fixed capital (tangible fixed assets) and many other

variables for all Norwegian limited liability manufacturing firms for the period 1993—2012

(see Raknerud, Rønning and Skjerpen, 2004). The database combines information from

two sources: (i) accounts statistics for all Norwegian limited liability companies; and (ii)

structural statistics for the manufacturing sector.

Table 1 presents summary statistics for three large manufacturing industries and for

total manufacturing. The three industries we examine are Wood products (NACE 16),

Metal products (NACE 25), and Machinery (NACE 28). In the table, the first and

second columns show the numbers of firms and exits by industry for the period 1994—2012.

Column three depicts annual exit frequencies; these lie between 3.6 and 3.9 percent. The

fourth column in Table 1 shows both the average and median number of person-years in the

1This will happen if the firm fails to file an approved account within a deadline.
2Mergers and fusions (the activity continues under a new firm identifier) are not included, but are

considered as exogenous right-censoring. There is typically a lag of 1 or 2 years between the date of the
last approved business account and the offi cial date of bankruptcy or liquidation.
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entry year of firms. For the three individual industries, as well as for total manufacturing,

the mean is either 5 or 6. Therefore, most firms are small —this is a typical feature of

Norwegian manufacturing.

Table 1: Descriptive statistics for 1994-2012

Industry (NACE) No. of No. of Average exit- Mean/median
firms exits frequency∗ person-years

Wood products (16) 1022 250 .036 16/5
Metal products (25) 1504 317 .037 17/6
Machinery (28) 1108 178 .039 17/5
Total manufacturing 10548 2265 .037 23/6
∗Number of exits divided by number of firm-years

We have examined how the use of labor (measured as person-hours), materials (in-

termediate inputs, including energy), and capital changes over time. For each factor of

production and each firm in each year, we first calculate the use of a factor in year t rela-

tive to the use of this factor in year t− 1. The graphs for person-hours and materials are

almost identical and resemble a normal distribution (see Figure A.1 in Online Appendix

A). In contrast, the graph for changes in the stock of capital has somewhat thicker tails

than those for person-hours and materials. The thicker tails mean that observations with

large (negative or positive) changes are more frequent. In particular, a thicker right tail

—the graph is skewed to the right —reflects the intermittent and lumpy nature of invest-

ment in Norwegian manufacturing. The distinct pattern of investment calls for another

modeling of capital than that of labor and materials (see Section 3).

3 Short-run factor demand

In this section we present our model for price decisions by firms. Because Norwegian firms

in the three manufacturing sectors of wood products, metal products, and machinery com-

pete extensively in international markets, we follow the standard in the international trade

literature and assume imperfect competition, here specified as monopolistic competition.

Hence, each producer (in a sector) faces a demand function of the following form:

Qit = ΦtP
−e
it (1)
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whereQit is the output from firm i at time t, Pit is the output price, and Φt is an exogenous

demand-shift parameter characterizing the size of the market. Furthermore, e > 1 is the

absolute value of the direct price elasticity. The price elasticity is common to all firms

and constant over time.

Let Mit denote materials, Lit labor, and Kit capital. In Section 2 we argued that the

modeling of materials and labor should be similar, but this modeling should differ from

that for capital. We now assume that the use of materials and labor are determined at

the beginning of a time period (variable inputs), whereas capital services in year t are

determined by the capital stock at the end of t − 1, Ki,t−1. The production function of

producer i is assumed to be:

Qit = AitK
χ
i,t−1 [Mρ

it + wtL
ρ
it]

ε
ρ , ρ < 1 (2)

where the elasticity of scale is equal to ε+χ, the elasticity of substitution between materials

and labor is 1/(1− ρ), and wt is a time-varying distribution parameter. Our production

function is a nested Cobb-Douglas function defined over capital and a CES aggregate

over labor and materials. The specification (2) allows for heterogeneity in productivity

across firms: Hicks-neutral changes in effi ciency are picked up by Ait, which may shift

over time and vary across firms, whereas a positive change in wt can be interpreted as

a labor-augmenting innovation. Thus, wt captures that the effi ciency of labor typically

changes over time.

The skill composition of labor may differ across firms, and hence, labor productivity

may also differ across firms. In a perfect labor market, differences in labor productiv-

ity should mirror relative wages. To capture heterogeneity in labor input, we measure

Lit in effi ciency units by dividing the employees of each firm into skill categories based

on educational attainment. Following Nilsen et al. (2011), we construct skill-adjusted

person-hours, Lit, by multiplying the number of person-hours in each skill category by an

effi ciency factor reflecting the relative wage of that skill category and then summing all

categories.3 The firm-specific wage qLit is measured as yLit/Lit, where yLit is the firm’s

3Formally, skill-adjusted labor for firm i is equal to Lit =
∑n
j=1

(
q
(j)
t /qLt

)
L
(j)
it , where q

(j)
t is the

average wage in skill category j across all firms in the industry (in year t), qLt =
∑
j q

(j)
t /n is the overall

average wage, and L(j)it is number of person-hours in skill category j in firm i. We use n = 3 skill categories
corresponding to primary, secondary, and tertiary (or higher) levels of education.
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total wage bill. The firm-specific wage reflects that wages within the same skill category

differ across firms, e.g., reflecting differences in local labor market conditions.

Let qit = (qMt, qLit) be the vector of the real unit price of materials and labor, re-

spectively. All prices have been deflated by the same price index so that in any time

period, one dollar of any cost component has the same value as one dollar of a revenue

component. We use the price index of capital, qKt, as the deflator, implying that the real

unit price of capital is one.

Assuming that producers are price takers in all factor markets, from Shephard’s lemma

we find that the short-run cost function is

C(qit, Ki,t−1, Qit) = cit

(
Qit

AitK
χ
i,t−1

) 1
ε

(3)

where

cit = [q%Mt + q%Lit/wt]
1
% , % =

ρ

ρ− 1
. (4)

Here, cit is a firm-specific price index of variable inputs, i.e., it is derived from the CES-

aggregate of materials and labor.

The short-run optimization problem of firm i in the beginning of period t, when the

producer knows qit, Φt, Ait and wt (and also e, χ, ρ and ε ), is to choose —for a given stock

of capital —the price that maximizes operating surplus (revenue minus costs of materials

and labor). Solving the resulting first-order condition gives the following equations for

revenue Rit = PitQit and short-run factor costs qMtMit and qLitLit:

 lnRit

ln(qMtMit)
ln(qLitLit)

 =

 0
1
1

 ln(
ϑ1

ϑ1 + 1
)−

 ϑ1

ϑ1 + %
ϑ1 + %

 ln cit −

 0
0
1

 lnwt

+

 0 0
% 0
0 %

[ ln qMt

ln qLit

]
+ 1(ϑ2 lnAit + dt + κ lnKi,t−1) (5)

where 1 is a vector of ones,

dt =
1

(ε+ e− eε) ln Φt − ϑ1 ln(
e

ε(e− 1)
) (6)

and

ϑ1 =
ε(e− 1)

(ε+ e− eε) > 0, ϑ2 =
(e− 1)

(ε+ e− eε) > 0, κ = χϑ2. (7)
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Note that if the demand parameter is allowed to be firm-time specific (Φit), the system

(5) is unaltered except that Ait is replaced by A∗it = Φ
1/(e−1)
it Ait; that is, A∗it captures both

demand shocks (Φit) and technology shocks (Ait). Hence, it is not possible to distinguish

between these two factors in the empirical analysis.4

Operating surplus, Πit, has the closed form5

Πit = eπitKκ
i,t−1 (8)

where

πit = − ln(1 + ϑ1)− ϑ1 ln cit + dt + ϑ2 lnAit. (9)

From (8) and (9) we see that ϑ1 is the absolute value of the elasticity of operating

surplus, Πit, (revenue minus costs of materials and labor) with respect to cit (the variable

cost index). Further, (8) shows that κ is the elasticity of operating surplus with respect

to the stock of capital.6 Finally, from the definition of πit in (9), we see that this variable

depends on a number of factors that reflect short-run profitability; we will therefore refer

to πit as a measure of short-run profitability.

Measurement errors Whereas the solution to (5) corresponds to an ex ante production

plan that is based on the information available to the firm at the beginning of t, the ex post

realizations, i.e., the data, are also determined by other factors; for example, measurement

errors and new information obtained during the year. In practice, observed revenue (yR),

material costs (yM), and labor costs (yL) will not satisfy the strong restrictions imposed

by (5). Therefore, we assume that the observed short-run profit factors are equal to

the corresponding structural variables except for eit, an additive white noise error term.

Define

yit = [ln(yRit), ln(yMit), ln(yLit)]
′. (10)

4One might think that we also have another identification problem due to the fact that we observe
only a price index for material costs, qMt (which is normalized to one in the base year). To see that this
is not a problem in our model, define q∗Mt = λqMt for an arbitrary normalization constant λ. Then define

w∗t = wt/λ
%

, d∗t = (ϑ2/e− 1) ln Φt + ϑ1 lnλ, and c∗it = [q%Lit/w
∗
t + q∗Mt

%]
1
% . It is easy to show that (5) still

holds with (qMt, wt, dt, cit) replaced by (q∗Mt, w
∗
t , d
∗
t , c
∗
it). Thus (5) is valid for any normalization of qMt.

5By a straightforward calculation, we find Πit = (1 − ε(e − 1)e−1)((qMt/cit)
%

+
(qLit/cit)

%
w−1t )c−ϑ1it edtAϑ2it K

κ
i,t−1. Then we use that 1 − ε(e − 1)/e = (1 + ϑ1)

−1 and
((qMt/cit)

%
+ (qLit/cit)

%
)/w−1t = 1.

6In order to ensure that the optimization with respect to capital is well-defined, we need κ < 1; our
model meets this requirement.
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We then assume

yit =
[

lnRit, ln(qMtMit), ln(qLitLit)
]′

+ eit, (11)

with

eit ∼ N (0,Σe). (12)

Identification Because Ait is unobserved, we cannot identify ϑ2. To see this, define

ait = lnAit/k̃ for an arbitrary proportionality factor k̃ and let ϑ̃2 = k̃ϑ2. Then

ϑ̃2ait = ϑ2 lnAit (13)

regardless of k̃. The parameter ϑ̃2 can be identified only by making arbitrary scaling

assumptions about ait. To obtain identification, we assume that ait is a stationary AR(1)

process with innovation variance equal to one:

ai1 ∼ N (0,
1

1− ϕ2
)

ait = ϕai,t−1 + ηit, ηit ∼ N (0, 1) , t > 1. (14)

Note that any non-zero mean in ait would be absorbed into the term dt in (5). Hence,

the assumption that ait has a zero mean is also a purely identifying restriction. The

assumptions about ait in (14) enable us to identify the loading coeffi cient ϑ̃2, but not the

parameter ϑ2 (because k̃ is unidentified).

The data-generating model derived from the short-run factor demand model can finally

be written as:

yit =

 0
1
1

 ln(
ϑ1

ϑ1 + 1
)−

 ϑ1

ϑ1 + %
ϑ1 + %

 ln cit −

 0
0
1

 lnwt

+

 0 0
% 0
0 %

[ ln qMt

ln qLit

]
+ 1(ϑ̃2ait + dt + κ lnKi,t−1) + eit. (15)

It should be noted that this equation is highly non-linear in the parameters % and lnwt

because cit depends on % and wt. Identification of ϑ1 and % follows because qLit (and cit)

varies across firms.
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4 Exit and investment dynamics

Let zt be a binary variable, which is one if the firm operates in year t and zero if the firm

exits during year t. If zt = 1, the firm will invest optimally and remain operative in at

least one more year, earning an uncertain profit Πt+1 in t + 1. If zt = 0, the firm will

realize the scrap value at the end of t.

We take the Markovian discrete choice model of Rust (1994) as a starting point and

assume that the period t utility from the choice (It, zt), given the state vector St =

(Kt−1, πt), can be written as:

u(St, It, zt) + εt(zt) (16)

where u(St, It, zt) is operating surplus minus capital expenditures, and εt(zt) is a random

component associated with the discrete choice zt. By definition we have

u(St, It, zt) =

{
Πt − c(It) if zt = 1 (continue)
Πt − c(−(1− δ)Kt−1) if zt = 0 (exit)

(17)

where the function c(It) denotes total cost of investment and δ is the rate of depreciation.

Operating surplus Πt follows from St and is therefore not affected by zt and It. If zt = 0, t

is the terminal period. The firm then sells its remaining capital stock, It = −(1− δ)Kt−1,

and obtains a scrap value, −c(−(1− δ)Kt−1), at the end of the year.

Following Rust (1994), we assume that the state vector St is Markovian with transi-

tion probability g(dSt+1|St, It) and that εt = (εt(0), εt(1)) has a bivariate extreme value

distribution with scale parameter τ and location parameters (ξ0, ξ1):
7

h(εt) =
∏

z∈{0,1}

τ exp{−τεt(z) + ξz)} exp {− exp{−τεt(z) + ξz}} . (18)

Further, the firm’s choice of whether to continue production, and if so, how much to

invest, follows from the solution of the Bellman equation:

V (St, εt) = max
zt, It

{
u(St, It, zt) + εt(zt) +

1

1 + r
E [V (St+1, εt+1)|St, It, zt]

}
. (19)

The value function V (St, εt) is characterized in Proposition 1, which is an extension of

the discrete choice model of Rust (1994); that is, we allow for a discrete and a continuous

decision variable. Without loss of generality, we may normalize ξ1 to zero.

7Because E(τεt(z)−ξz) = γ for z ∈ {0, 1}, where γ is Eulers’constant, we have E(εt(z)) = (γ+ξz)/τ .
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Proposition 1 Assume (16)—(18) and that St = (Kt−1, πt) is Markovian with transition

probability g(dSt+1|St, It), and ξ1 = 0. Then, the expected net present value of the firm is

V (St, εt) = max
zt∈{0,1}

[Πt + ν(St, zt) + εt(zt)] (20)

where

ν(St, 0) = −c(−(1− δ)Kt−1) (21)

and

ν(St, 1) = max
It

{
−c(It) +

1

1 + r
×∫ [

Πt+1 +
1

τ
ln [exp(τν(St+1, 0) + ξ0) + exp(τν(St+1, 1))]

]
g(dSt+1|St, It)

}
.

(22)

The conditional exit probability has the closed form expression Pr(zt = 0|St, zt−1 = 1) =

p(St), where

p(St) =
1

1 + exp {−[−τc(−(1− δ)Kt−1)− τν(St, 1) + ξ0]} . (23)

The proof of Proposition 1 is given in Online Appendix B, part I. The exit probability

p(St) is the conditional probability that zt = 0, given St = (Kt−1, πt) and zt−1 = 1 (the

firm has not already closed down). Exit is an absorbing state, so zt = 0 implies zt+1 = 0.

In Proposition 1, ν(St, 1) is the net present value of the firm if it does not exit in the

current period (zt = 1) and makes optimal investment decisions now (It) and in the future:

ν(St, 1) = max
It

{
−c(It) +

1

1 + r
E [V (St+1, εt+1)|St, It, zt = 1]

}
.

Above, we introduced the general cost of investment function c(It). We now specify

this function. Our starting point is that there is one type of capital adjustment cost,

namely that the resale price of capital relative to purchaser price of capital, henceforth

termed s, is less than one; for example, see Abel and Eberly (1996):

cs(I) =

{
I if I ≥ 0
sI if I < 0

s ≤ 1. (24)

According to (24), upon selling capital (I < 0), the firmmay not obtain the purchaser price

of capital: Markets for old capital may be imperfect, or there may be large transaction
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costs, that is, s < 1. For parts of the capital stock there may even be no market (i.e.,

zero price) because of, for example, asymmetric information. The special case s = 1

corresponds to the neoclassical theory of investment. With our specification (24), cs(I) is

weakly convex with a kink at zero.8

The value function and its parameterization The value function ν(St, 1) is the

solution to the fixed-point equation (22), but ν(St, 1) has no closed form; it is implicitly

defined as a function of the model parameters θ (to be specified below). Under standard

regularity conditions, ν(St, 1) will be differentiable with respect to θ.

Relation (22) contains a general profit expression Πt and a general cost of investment

function c(It). These are now replaced with the corresponding elements in our structural

model; that is, we specify Πt using (8) and replace c(It) by (24). Further, in (22) the

transition probability g(dSt+1|St, It) is a function of St and It, where St = (Kt−1, πt);

the transition probability depends on Kt−1 and πt. In our structural model, we assume

that the change in the stock of capital follows the standard deterministic rule Kt =

(1− δ)Kt−1 + It, whereas πt is assumed to be a stationary AR(1) process:

πt = µ+ ϕ(πt−1 − µ) + ζt

ζt ∼ N (0, σ2) (25)

with corresponding transition density denoted g(ϕ,µ,σ)(πt+1|πt). Note that because of (9)

and (13), the AR-coeffi cient in (25) must be the same as that in (14). The vector of

structural parameters can now be specified as

ωstr = (κ, ϑ1, %, ϕ, µ, σ, τ , s, ξ0).

In addition to the structural parameters, our model contains nuisance parameters

ωnui = (ϑ̃2, d1, ..., dT , w1, ..., wT , vech(Σe)
′).

The nuisance parameters do not have any interesting economic interpretation, but they

are needed to simulate data from the structural model. Therefore, both ωstr and ωnui

8Figure A.2 in online Appendix A illustrates how the net value of continuing, v(St, 1) − v(St, 0),
depends both on s and on our measure of short-run profitability, πt.
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must be estimated simultaneously. Hence, define θ = (ωnui, ωstr) as the vector of all

data-generating model parameters.9

The functional operator corresponding to the right-hand side in (22) can now be

specified as:

Ψθ(ν)(K, π) = max
I

{
−cs(I) +

1

1 + r
×∫ [

exp(π′)K ′κ +
1

τ
ln [exp(τs(1− δ)K ′ + ξ0) + exp(τν(K ′, π′))]

]
g(ϕ,µ,σ)(π

′|π)dπ′
}

s.t. K ′ = (1− δ)K + I. (26)

The value function ν(St, 1) is then equal to νθ(Kt−1, πt), where νθ is the solution to the

fixed-point equation

νθ = Ψθ(νθ). (27)

Furthermore, the conditional exit probability (23) can be specified as:

pθ(Kt−1, πt) =
1

1 + exp {−[τs(1− δ)Kt−1 − τνθ(Kt−1, πt) + ξ0]} . (28)

We will later need to differentiate pθ(·) with respect to θ (see Section 6). For this purpose,

we apply the inverse function theorem to (27) to obtain:

∂νθ
∂θ

=

[
Id− ∂Ψθ(νθ)

∂ν

]−1
∂Ψθ(νθ)

∂θ
(29)

where Id denotes the identity matrix and the derivatives of the value function Ψθ(ν) are

obtained by applying the envelope theorem to (26) (see Milgrom and Segal, 2002).

The structure of the solution in (26) is well known from the theory of investment

under uncertainty (see Stokey, 2009, Ch. 11). Consider a firm that at the end of t —

"just before" making its investment decision —has a remaining stock of capital equal to

(1− δ)Kt−1. Then there exist unique threshold values kθ(πt) and kθ(πt) such that optimal

investment is zero in a "region of inactivity" (1 − δ)Kt−1 ∈ [kθ(πt), kθ(πt)]. If the stock

of capital is outside this region, the firm adjusts its stock of capital immediately to one

of the boundaries: If (1− δ)Kt−1 < kθ(πt), the firm chooses It > 0 such that Kt = kθ(πt),

where the marginal return to a unit of investment equals the acquisition price 1. If

(1− δ)Kt−1 > kθ(πt), the firm chooses It < 0 such that Kt = kθ(πt), where the marginal

return to a unit of investment equals the selling price s.
9For partitioning of row vectors, we adopt the following notation: If u = (u1, u2), then (u, u3) =

(u1, u2, u3). Thus, for functions fv with v = (u1, u2, u3), fv = f(u1,u2,u3) = f(u,u3).
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To solve the fixed-point equation νθ = Ψθ(νθ) numerically, it is necessary to discretize

the state space so that K ∈ K = {K(i)}NKi=1 and π ∈ A = {π(j)}Nπj=1. Then K ×A consists

of NKNπ grid points. The standard solution method is successive approximations (see

Online Appendix B, part II, for details and formulas). To discretize the continuous πt -

process, we use the standard finite-state approximation of Tauchen (1986), with a fixed

grid size, to obtain transition probabilities gD(ϕ,µ,σ)(π(j)|π(i)). We first apply his method

on the standardized AR(1) process ut = ϕut−1 + ε̃t (ε̃t has mean zero and unit variance).

Then, we set π(j) = µ + σu(j), where {u(j)}Nπj=1 is the discretized state space of ut. To

discretize the Kt-process, we use a fixed grid size on logarithmic scale.10

5 Parameterization and estimation of the auxiliary
model

Our estimation strategy draws on the effi cient method of moments (see Gallant and

Tauchen, 1996), and consists of the following steps. First, we specify an auxiliary model

that approximates our structural model. Next, we derive a likelihood function for the

auxiliary model. The likelihood function of the auxiliary model is referred to as the

quasi-likelihood function. We use real observations to estimate the parameters in the

auxiliary model, θa. The data-generating model and the auxiliary model have the same

parameters: superscript a denotes that a given parameter (or parameter vector) enters

the quasi-likelihood function —as opposed to the data-generating model. The estimator

of θa is denoted θ̂a. Because we use maximum quasi-likelihood to estimate the auxiliary

parameters, the value of the resulting score function is per definition zero.

Next, for a given choice of the parameters in the structural model (θ), we simulate

data from this model. The computer-generated data are used to recalculate the score

function, with θa fixed at θ̂a. Since the simulated data differ from the observations, the

corresponding score will in general differ from zero. The indirect inference estimator finds,

through simulations of the economic model for a given θ, the value of θ that minimizes

(in a weighted mean-squared error sense) the score vector evaluated at θ̂a. Note that

10Our approach is analogous to Tauchen (1990). We let the grid extend four standard deviations on both
side of the unconditional mean of lnK∗(πt), where K∗(πt) is the optimal (steady state) capital stock in
the special case without adjustment cost (s = 1): lnK∗(πt) = 1/(1−κ)[ln(κ/(r+δ))+µ+φ(πt−µ)+σ2/2]
(see also Footnote 17).
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we estimate the parameters in the auxiliary model only once. The one-to-one relation

between θ and θa means that our score-based indirect inference estimator is asymptotically

equivalent to the more common —but in our case, infeasible —distance-based indirect

inference estimators (see Gourieroux and Monfort, 1996, p. 66).11

Our estimation strategy is slightly modified compared with that used by Gallant and

Tauchen (1996). First, the model parameters θ are partitioned into three subvectors:

θ = (θ1, θ2, θ3). The corresponding parameters of the auxiliary model are θa = (θa1, θ
a
2, θ

a
3).

The auxiliary model is estimated in three stages, where each stage corresponds to a partial

quasi-likelihood maximization with respect to a subvector of θa. In the first stage, we

estimate θa1. The corresponding parameters of the data-generating model are:

θ1 = (ω
nui

, κ, ϑ1, %, ϕ).

These are the parameters of the factor demand model (15). The difference between the

structural and auxiliary factor demand model is that the latter treats investment and exit

decisions as being strictly exogenous.

In the second stage, we define

θ2 = (µ, σ)

and replace the latent state variable πit with a statistic, π̂it, which is calculated from

the data. This approximation yields an auxiliary transition density g(ϕa,θa2)(π̂i,t+1|π̂it)

corresponding to g(ϕ,θ2)(πi,t+1|πit). The auxiliary parameters θa2 are estimated in the

second stage with θa1 fixed at its estimate from the first stage.

In the third stage, we estimate the auxiliary exit model with respect to the remaining

auxiliary parameters, θa3. The corresponding structural parameters are:

θ3 = (τ , s, ξ0) .

This stage is conditional on the estimated auxiliary parameters from the first two stages.

11The small sample properties of indirect inference estimators were first studied by Gourieroux, Renault
and Touzi (see Gourieroux et al., 2000). Some studies have shown that score-based estimators often have
poor finite sample properties relative to distance-based estimators; for example, see Michaelides and Ng
(2000) and Duffee and Stanton (2008). Fuleky and Zivot (2014) propose a score-based estimator that has
the same asymptotic properties as the EMM estimator.
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5.1 Quasi-likelihood estimation of the factor demand model

The data on firm i can be seen as the realization of the stopped stochastic process yi =

(Ki0, Ki1,yi1, ..., Kiτ i ,yiτ i), where yit is defined in (10) and 1 ≤ τ i ≤ T is the stopping

time. Here, T is the year of right censoring. To simplify notation, we have assumed that

the firm enters at t = 1 and that the year of right censoring is the same for all firms.12

The reason for stopping is either censoring or exit; in the latter case, zi,τ i+1 = 0. Note

that zit = 1 for t ≤ τ i, while zi,τ i+1 = 1 (the firm is not observed) or zi,τ i+1 = 0 (the firm

has exited). Formally,

τ i = min(T,max t : zit = 1). (30)

The last observed value of yit is at τ i, whereas zit is observed at τ i + 1.

Define zi = (zi2, ..., zi,τ i+1). Then, under the assumption that zit and Kit are strictly

exogenous variables, we obtain a simple log-likelihood function of θa1 given (yi, zi):

l1(θa1; yi, zi) =
T∑
t=2

zit ln fθa1 (yit|yi,t−1, Ki,t−1, ...,yi1, Ki1) + ln fθa1 (yi1|Ki0) (31)

where fθa1 (yit|·) is the normal density implied by (12), (14), and (15). Note that zit = 0

when yit is unobserved.

The assumption that zit andKit are strictly exogenous variables violates the structural

model. Hence, (31) is a log-likelihood function of an auxiliary model — a quasi log-

likelihood function. The auxiliary model is straightforward to cast in a state-space form,

where yit is the observation vector with normally distributed measurement errors (12),

and ait is the state variable with transition equation (14). One-step ahead predictions

and prediction error covariance matrices are readily available using the Kalman filter (see

Shumway and Stoffer, 2000). Hence, it is straightforward to calculate l1(θa1; yi, zi). To

obtain analytical derivatives, we use a decomposition of l1(θa1; yi, zi), which is well-known

from the EM-algorithm (see Koopman and Shephard, 1992). The partial quasi-likelihood

estimator θ̂a1 is obtained by maximizing l
1(θa1; yi, zi) with respect to θ

a
1.

5.2 Quasi-likelihood estimation of the exit probability model

There are two problems related to the exit probability (28). The first is to solve the

functional fixed-point equation (27). This problem is diffi cult, but tractable, as we show
12There is no loss of generality in assuming that all firms enter at t = 1. Furthermore, T can be

replaced by a firm-specific (exogenous) year of right censoring, Ti, in all formulas below.
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in Online Appendix B, part II. The second is that πit is a latent state variable. To handle

the second problem, we use that πit = ln(Πit/K
κ
i,t−1) (see (8)) and approximate πit by the

statistic

π̂it = ln
(

max{Π̂it/K
κ̂a

i,t−1, e
π(1)}

)
for 1 ≤ t ≤ τ i. (32)

Here, Π̂it is observed operating surplus:

Π̂it = yRit − yMit − yLit (33)

and π(1) is the lower threshold of πt in the finite state space.

Next, we replace the latent variable πit by π̂it in the transition density g(ϕ̂a,θa2)(·|·) and

define π̂i = (π̂i1, ..., π̂iτ i). This gives us a simple partial quasi-likelihood of θ
a
2, given θ̂

a
1

and (zi, π̂i):

l2(θa2|θ̂a1; zi, π̂i) =
T∑
t=2

zit ln g(ϕ̂a,θa2)(π̂it|π̂i,t−1) (34)

(recall that ϕ̂a is included in the vector θ̂a1). The partial quasi-likelihood estimator θ̂
a
2 is

the maximizer of (34) with respect to θa2.

In the last step of the specification of the auxiliary model, we obtain a partial quasi-

likelihood estimate of θa3. We first replace πit by π̂i,t∧τ i in (28), where t ∧ s ≡ min(t, s),

to reflect that π̂it is not observed when zit = 0. We then approximate the structural exit

probability, pθ(Ki,t−1, πit), see (28), by the auxiliary model

pθa(Ki,t−1, π̂i,t∧τ i) ≡
1

1 + exp
{
−
(
τasa(1− δ)Ki,t−1 − τaνθa(Ki,t−1, π̂i,t∧τ i) + ξa0

)} . (35)
If θ = θa, then νθa(K, π) = νθ(K, π) — the true value function defined in (27). The

difference between νθ and νθa is that νθ enters the true structural model (28) (through

νθ(Ki,t−1, πit)), whereas νθa enters the auxiliary model (through νθa(Ki,t−1, π̂i,t∧τ i)).

Let p
(θ̂a1 ,θ̂

a
2 ,θ

a
3)
denote pθa as a function of θ

a
3 with (θa1, θ

a
2) fixed at (θ̂a1, θ̂

a
2). The corre-

sponding partial quasi log-likelihood function of θa3 given (θ̂a1, θ̂
a
2) and (yi, zi, π̂i) is:

l3(θa3|θ̂a1, θ̂a2; yi, zi, π̂i) =
∑T

t=1 zi,t+1 ln
(

1− p
(θ̂a1 ,θ̂

a
2 ,θ

a
3)

(Kit, π̂i,t+1∧T )
)

+
∑T

t=1(zit − zi,t+1) ln p
(θ̂a1 ,θ̂

a
2 ,θ

a
3)

(Kit, π̂it).
(36)

To explain (36), note that there are three possibilities for the "weights" zi,t+1 and

zit−zi,t+1 in (36). Either i) the firm remains operative in t+1 (zi,t+1 = 1 and zit−zi,t+1 =

0), or ii) an exit decision is made in t+ 1 (zi,t+1 = 0 and zit − zi,t+1 = 1), or iii) the firm
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has already exited (zi,t+1 = 0 and zit − zi,t+1 = 0). The respective quasi log-likelihood

contributions are (the log of): 1−pθa( Kit, π̂i,t+1∧T ) in case i) (where t+1∧τ i = t+1∧T ),

and pθa(Kit, π̂it) in case ii) (where t + 1 ∧ τ i = t). In case iii), the quasi log-likelihood

contribution is obviously 0.

We obtain the partial quasi-likelihood estimator of θ̂a3 by maximizing (36) with respect

to θa3. This optimization problem is computationally demanding as it requires reevaluation

of the value function νθa for each trial value θ
a, which means that the functional fixed-

point equation (27) has to be solved each time a trial value is tested. Algorithmic details

are given in Online Appendix B, part II.

6 Indirect inference

The partial quasi-likelihood estimator θ̂a = (θ̂a1, θ̂
a
2, θ̂

a
3) satisfies a score moment condition.

To see this, let Yi = (yi, zi, π̂i) and define13

l(θa|Yi) = l1(θa1; yi, zi) + l2(θa2|θa1; zi, π̂i) + l3(θa3|θa1, θa2; yi, zi, π̂i)

∂l(θa|Yi)
∂θa

=
[

∂l1(θa1 ;yi,zi)

∂θa1

′, ∂l2(θa2 |θa1 ;zi,π̂i)

∂θa2

′, ∂l3(θa3 |θa1 ,θa2 ;yi,zi,π̂i)

∂θa3

′
]′
. (37)

Then θ̂a satisfies the score condition

1

N

N∑
i=1

∂l(θ̂a|Yi)
∂θa

= 0. (38)

Next, define the binding function

b(θ, θa) = Eθ

(
∂l(θa|Yi)
∂θa

)
(39)

where Eθ(·) means that the expected value is evaluated at the parameter vector θ. Let

θ0 denote the true values of θ. Further, let θa∗ be the vector of pseudo-true parameters,

i.e., the probability limit of θ̂a when N →∞ (for now, we suppress the dependence of θ̂a

on N in the notation). Relations (38)—(39) imply that θa∗ is determined by the moment

condition

b(θ0, θa∗) = 0. (40)

13Throughout this paper, gradient vectors are column vectors. Consequently, the j′th column of a
Jacobian matrix contains the gradient of the j′th component of a (row- or column) vector function.
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Equation (40) implicitly defines a mapping from θ0 to θa∗. From the implicit function

theorem, we obtain:
∂θa∗

∂θ0 = −∂b(θ
0, θa∗)

∂θ

[
∂b(θ0, θa∗)

∂θa

]−1

. (41)

The purpose of indirect inference is to establish a link between θ0 and θa∗ through

simulations, which enables estimation of θ0 from θ̂a without knowing the binding function.

To this end, we can simulate S trajectories Yi for each of the N firms, i.e., SN trajectories

in total. Let Y (s)
i (θ) = (y

(s)
i (θ), z

(s)
i (θ), π̂

(s)
i (θ)) denote an arbitrary simulated trajectory

for firm i for a given θ (see Section 6.1 for details). The binding function b(θ, θa) can then

be estimated through simulations as follows:

1

NS

N∑
i=1

S∑
s=1

∂l(θa|Y (s)
i (θ))

∂θa
. (42)

Ideally, the estimate of θ0, θ̂, is the value of θ that makes (42) equal to 0 when θa = θ̂a.

This is not possible to achieve in practice for two reasons: First, the simulation of the

discrete choice will change discontinuously from 0 to 1 or vice versa as θ varies. Second

—and regardless of the continuity issue —we may not be able to find a θ that makes (42)

equal to zero (with θa = θ̂a). Our effi cient method of moments estimator therefore i)

replaces Y (s)
i (θ) with a smooth trajectory Y ∗(s)i (θ) (see Section 6.1), and ii) minimizes the

deviation of the average simulated score from 0 according to a specific metric (|| · ||Ω):

θ̂ = arg min
θ

∥∥∥∥∥
N∑
i=1

S∑
s=1

∂l(θ̂a|Y ∗(s)i (θ))

∂θa

∥∥∥∥∥
Ω

(43)

(see Section 6.2 for a definition of the metric || · ||Ω). The smoothing consists in replac-

ing the simulated zit, z
(s)
it (θ), with its conditional expectation given the simulated state

variables, ẑ(s)
it (θ). That is, ẑ(s)

it (θ) is a conditional survival probability.

6.1 Simulation of trajectories from the structural model

In this Subsection, we will i) show how to calculate Y ∗(s)i (θ), ii) demonstrate thatEθ(∂l(θ
a|Y ∗(s)i (θ))/∂θa) =

b(θ, θa), and iii) show that Y ∗(s)i (θ) is a continuous function of θ. It follows that

1

NS

N∑
i=1

S∑
s=1

∂l(θ̂a|Y ∗(s)i (θ))

∂θa
(44)

converges in probability towards b(θ, θa∗) as N →∞ and θ̂ is a consistent estimator of θ0.

First, the algorithm for generating the smooth trajectory Y ∗(s)i (θ) is as follows:
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Let θ be given (We use θ̂a as the initial value).

A.1 Solve (27) to obtain νθ(K, π) and the corresponding optimal investment rule iθ(K, π)

(the optimal I in (26)).

A.2 For given i and s: Set t = 1 and K(s)
i0 (θ) = Ki0 (the actual initial value of firm i).

A.3 Draw a
(s)
it (θ) from (14) and set π(s)

it (θ) = ϑ̃2a
(s)
it (θ)− ln(1 + ϑ1)− ϑ1 ln cit + dt.

A.4 Draw e(s)
it (θ) from (12) and obtain y(s)

it (θ) from (15) and π̂(s)
it (θ) from (32)—(33).

A.5 For t = 1: set ẑ(s)
it (θ) = 1. For t > 1: set ẑ(s)

it (θ) =
(

1− pθ(K(s)
i,t−1(θ), π

(s)
it (θ))

)
ẑ

(s)
i,t−1(θ)

(cf. (28)).

A.6 For t < T + 1: set K(s)
it (θ) = (1 − δ)K

(s)
i,t−1(θ) + iθ(K

(s)
i,t−1(θ), π

(s)
it (θ)). For t =

T + 1: stop.

A.7 Set t = t+ 1 and go to A.3.

The generated trajectory is Y ∗(s)i (θ) = (y
(s)
i (θ), ẑ

(s)
i (θ), π̂

(s)
i (θ)) with

y
(s)
i (θ) = (K

(s)
i0 (θ), K

(s)
i1 (θ),y

(s)
i1 (θ), ..., K

(s)
iT (θ),y

(s)
iT (θ))

ẑ
(s)
i (θ) = (ẑ

(s)
i2 (θ), ..., ẑ

(s)
i,T+1(θ))

π̂
(s)
i (θ) = (π̂

(s)
i1 (θ), ..., π̂

(s)
iT (θ)).

Second, define W (s)
it (θ) = (K

(s)
i,t−1(θ), π

(s)
it (θ)) and W

(s)
i,1:t(θ) = {W (s)

ik (θ)}tk=1 and let

z
(s)
it (θ) be the corresponding discrete choice. Proposition 2 establishes that ẑ(s)

it (θ)—defined

recursively in A.5 —is the conditional expectation of z(s)
it (θ) givenW (s)

i,1:t(θ). Before stating

Proposition 2, we write down the components of ∂l(θa|Y ∗(s)i (θ))/∂θa for later reference:

∂l(θa|Y ∗(s)i (θ))

∂θa
=
[

∂l1(θa1 ;y
(s)
i (θ),ẑ

(s)
i (θ))

∂θa1

′,
∂l2(θa2 |θa1 ;ẑ

(s)
i (θ),π̂

(s)
i (θ))

∂θa2

′,
∂l3(θa3 |θa1 ,θa2 ;y

(s)
i (θ),ẑ

(s)
i (θ),π̂

(s)
i (θ))

∂θa3

′
]′

(45)
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(cf. (37)), with

∂l1(θa1; y
(s)
i (θ), ẑ

(s)
i (θ))

∂θa1
=

∂ ln fθa1 (y
(s)
i1 (θ)|K(s)

i0 (θ))

∂θa1
+

T∑
t=2

[
ẑ

(s)
it (θ)×

∂ ln fθa1 (y
(s)
it (θ)|y(s)

i,t−1(θ), K
(s)
i,t−1(θ), ...,y

(s)
i1 (θ), K

(s)
i1 (θ))

∂θa1

]
∂l2(θa2|θa1; ẑ

(s)
i (θ), π̂

(s)
i (θ))

∂θa2
=

T∑
t=2

ẑ
(s)
it (θ)

∂ ln g(ϕa,θa2)(π̂
(s)
i (θ)|π̂(s)

i,t−1(θ))

∂θa2

∂l3(θa3|θa1, θa2; y
(s)
i (θ), ẑ

(s)
i (θ), π̂

(s)
i (θ))

∂θa3
=

T∑
t=1

ẑ(s)
i,t+1(θ)

∂ ln
(

1− p(θa1 ,θ
a
2 ,θ

a
3)(K

(s)
it (θ), π̂

(s)
i,t+1∧T (θ))

)
∂θa3

+ (ẑ
(s)
it (θ)− ẑ(s)

i,t+1(θ))
∂ ln p(θa1 ,θ

a
2 ,θ

a
3)(K

(s)
it (θ), π̂

(s)
it (θ))

∂θa3

]
(46)

(cf. (31), (34) and (36)).

Proposition 2 Let ẑ(s)
it (θ) and Y ∗(s)i (θ) be calculated recursively using the algorithm A.1—

A.7. Then, with ∂l(θa|Y ∗(s)i (θ))/∂θa as in (45)—(46),

ẑ
(s)
it (θ) = Eθ(z

(s)
it (θ)|W (s)

i,1:t(θ)) (47)

and

Eθ

(
∂l(θa|Y ∗(s)i (θ))

∂θa

)
= b(θ, θa). (48)

The proof is provided in the Appendix, part I. An illustration of Proposition 2 on a

(very) simplified version of our model, that allows for closed-form solutions, is provided

in the Appendix, part II.14

Third, let us examine the continuity properties of Y ∗(s)i (θ). We first note that the

simulation of a(s)
it (θ), π(s)

it (θ) and e(s)
it (θ) in A.3—A.4 can be reduced to continuous trans-

formations (in θ) of random draws from a N (0, 1) distribution. The continuity of Y ∗(s)i (θ)

then follows from that of νθ and iθ (cf. (26)—(27)). However, Y
∗(s)
i (θ) cannot be simulated

on a computer exactly as in A.1—A.7. The reason is that the value function, νθ, and

14Our approach is related to —but distinctively different from —the GII method of Bruins et al. (2015).
While we utilize the smoothing properties of the conditional expectation operator, Bruins et al. replace
simulated discrete choices with smooth functions of underlying latent variables that determine the discrete
outcomes. Our method is simpler as it does not rely on smoothing functions.
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the investment function, iθ, must be approximated. This is handled by solving a dynamic

optimization problem on a discretized state space K×A (see Online Appendix B, part II).

Although the resulting discretized solution, νDθ and i
D
θ , could be extended to any (K, π)

by choosing a neighboring grid point on K × A, νDθ and iDθ would still be discontinuous

in θ.

Our solution is the following: Define νD̃θ as the bilinear interpolation of νDθ on the

grid squares [K(i), K(i+1)] × [π(j), π(j+1)]
15. For any given θ, νD̃θ (K, π) is then piecewise

linear along any line parallel with a coordinate axis in R+ × R+ and piecewise quadratic

along any other straight line, with kinks at the border of the grid squares. Moreover, as

shown in Online Appendix B, part III, νD̃θ (K, π) is continuous in θ for any (K, π). The

investment function iθ is dealt with in a similar way. In Online Appendix B, part III, we

show that by replacing νθ and iθ with ν
D̃
θ and i

D̃
θ in the algorithm A.1—A.7, we obtain a

continuous simulated trajectory Y ∗(s)i (θ).

6.2 Properties of the indirect inference estimator

For any vector x and weighting matrix Ω, let ||x||Ω ≡ x′Ωx. Let θ̂aN denote θ̂a as a

function of the sample size, N , and θ̂NS denote θ̂ as a function of N and S, where S

is chosen to keep the estimation uncertainty from the simulations (i.e., the Monte Carlo

standard error) below a chosen tolerance level. Our indirect inference estimator, θ̂NS, is

the solution to (43) with Ω = (ÎN)−1, where ÎN is a consistent estimator of

I = V arθ0

(
∂l(θa∗|Yi)

∂θa

)
(49)

and I−1 is the optimal weighting matrix under the assumptions of Gourieroux et al.

(1993). As is well known, the existence of a one-to-one relation between the parameters θa

and θ implies that the weighting matrix in (43) will not affect the asymptotic distribution

of θ̂NS.

Let Y ∗(s)i (θ) be generated as in the algorithm A.1—A.7, i.e., using the exact solution

νθ of the functional equation (27). To obtain standard errors of the indirect inference

estimator based on Y ∗(s)i (θ), we utilize a property of the “Third Version of the Indirect

Estimator”in Gourieroux et al. (1993, p. S110—S111). Using this property in our model,

as N becomes large, we have:

15See Numerical Recipes Library (Press et al., 1994, p. 123).
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√
N(θ̂NS − θ0)

D'
[
∂θa∗

∂θ0

]−1

J−1 ×(
N−1/2

N∑
i=1

∂l(θa∗|Yi)
∂θa

− S−1

S∑
s=1

N−1/2

N∑
i=1

∂l(θa∗|Y ∗(s)i (θ0))

∂θa

)
(50)

where

J = −p lim
N−→∞

N−1

N∑
i=1

∂2l(θa∗|Yi)
∂θa∂θa ′

and ∂θa∗/∂θ0 is defined in (41). It follows that

V ar(θ̂NS) ' N−1

[
∂θa∗

∂θ0

]−1

J−1(I + S−1I∗)J
−1
[
∂θa∗

∂θ0

]−1′

(51)

with

I∗ = V arθ0

(
∂l(θa∗|Y ∗(s)i (θ0))

∂θa

)
.

To use (51) in practice, ∂θa∗/∂θ0 can be estimated by finite differencing using (41), whereas

estimates of I, I∗, and J can be obtained from sample analog estimators (in all cases θ0

and θa∗ are replaced with θ̂NS and θ̂
a
N , respectively).

As explained at the end of the previous Subsection, to simulate Y ∗(s)i (θ) on a computer,

νθ and iθ must be replaced (in A.1—A.7) with approximate solutions, νD̃θ and i
D̃
θ , based

on a discretization of the state space combined with bilinear interpolation. The resulting

Y
∗(s)
i (θ), which is henceforth referred to as the feasible Y ∗(s)i (θ), is continuous in θ, but

it is not differentiable because the bilinear interpolation has kink points at the border of

the grid squares. Fortunately, the averaging in (44) will "smooth out" the kinks as NS

increases, and the magnitude of the discretization error can be assessed by choosing in-

creasingly finer grids. As the number of grid points increases, (50)—(51) will be applicable

to the feasible Y ∗(s)i (θ).16

16Santos and Vigo-Aguiar (1998) show, under quite general regularity conditions, that the error of the
value function approximation resulting from discretization, is of order O(h2), where h is the grid size.
Tauchen (1990) assesses the discretization error in a dynamic programming model that is similar to our
model: a stochastic growth model with two state variables; capital stock and technological effi ciency, and
one continuous decision variable; investment. He shows that, with as little as 1,800 grid points, a highly
accurate approximation of the value function and the optimal investment function is obtained using a
combination of discretization and local linear interpolation.
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Table 2: Interpretation of key parameters
ϑ1 The absolute value of the elasticity of operating surplus with respect to variable costs
% The elasticity of substitution between materials and labor is 1− %
κ The elasticity of operating surplus with respect to the stock of capital
s The price of old capital relative to the price of new capital
τ The coeffi cient of ν(St, 0)− ν(St, 1) in the conditional exit probability model
ϕ AR-parameter in the process of short-run profitability: πt = µ+ ϕ(πt−1 − µ) + ζt
µ The unconditional mean of πt
σ The standard deviation of the innovation term ζt

7 Estimation

To estimate the model, we apply a version of the conjugate direction method developed

by Brent (1973, Ch. 7) in combination with the derivative-free line search algorithm

from the Numerical Recipes Library (Press et al., 1994, p. 419); cf. the discussion in

Subsection 6.2. The algorithm is implemented as a GAUSS program. For the results

reported here, we used S = 10 and NK = Nπ = 100. Then quasi-likelihood estimation

typically took between 45 and 60 minutes on a 64 core Linux server with a maximum clock

rate of 2.5 GHz (HP BL685c G7). Indirect inference estimation, using the corresponding

quasi-likelihood estimates as initial values, converged after about 24 hours.

7.1 Parameter estimates

Table 2 shows the key parameters and their interpretations. The estimated parameters

are shown in Table 3, with standard errors —calculated from (51) —in parentheses. As

seen from Table 3, the parameter estimate of ϑ1 —the absolute value of the elasticity

of operating surplus (Π) with respect to variable cost (c) —is roughly 0.4 for the three

individual industries, as well as for total manufacturing. Thus, our results indicate that if

the prices of materials and labor increase by one percent, operating surplus is reduced by

around 0.4 percent. The estimates of % are around 0.3. Because the elasticity of substi-

tution between labor and materials is 1− %, the estimates of this substitution parameter

are around 0.7.

We now turn to the importance of capital. The estimates of κ — the elasticity of

operating surplus (Π) with respect to the stock of capital (K) — are depicted in the

fourth column of Table 3; they are all around 0.8. Hence, operating surplus increases by
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around 0.8 percent if the stock of capital is increased by one percent (and the variable

factors of production are optimized). Our estimates of the adjustment cost parameter s

lie in the range of 0.70 to 0.93, and all estimates are significantly less than one at the

5 percent level. The estimate for total manufacturing is 0.85 (with a standard error of

0.02), implying about a 15 percent "discount" in the second-hand capital market. Our

results therefore indicate moderate adjustment cost of capital.

The sixth column of Table 3 shows that the net present value of continuing production

relative to exiting, ν(St, 1)− ν(St, 0), has a significant negative impact on the probability

to exit: the estimated value of the parameter τ , which reflects the extent to which the

producer takes profitability into account when deciding when to exit, is significant and

positive in all industries. The estimates range from 0.48 in machinery to 0.67 in metal

products, with an estimate of 0.63 for total manufacturing.

The last three columns in Table 3 show the results for the parameters of the AR-

process of the short-run profitability measure πt (see (25)). All estimates of the AR-

coeffi cient ϕ lie around 0.9, which implies a highly persistent, but stationary, πt-process.

Our results indicate that the distribution of short-run profitability is quite similar across

the investigated industries, with respect to both the mean and the dispersion.
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7.2 The gross rate of return to capital

In this section, we report the estimated gross rate of return to capital, using different

measures for this variable. First, we introduce a theoretical rate of return, defined as the

rate of return in steady state. To this end, we first define the steady-state stock of capital

as K∗(π) = (1 − δ)K∗(π) + i(K∗, π), where i(K∗, π) is the optimal investment rule (see

Section 6.1). Thus, if the firm is in steady state, that is, (Kt−1, πt) = (K∗(πt), πt), it will

not change its stock of capital from t−1 to t. Steady state is a theoretically useful concept

as it reduces the state space from two dimensions to one by replacing an arbitrary Kt−1

with K∗(πt).

The steady-state gross rate of return to capital is:

GR(πt) ≡ E

(
Πt+1

K∗(πt)
|πt
)

= E(eπt+1K∗(πt)
κ−1|πt) (52)

where we have used that Πt+1/Kt = eπt+1Kκ−1
t , see (8), in the second equation.

We now compare the steady-state rate of return to capital to other measures of the

rate of return to capital. First, in neoclassical theory, the average rate of return to capital

is independent of the stock of capital (in steady state), and it is equal to (r+ δ)/κ.17 Our

estimate of the neoclassical gross rate of return to capital is about 24 percent.

In panel a in Figure 1, we show estimates of three alternative measures of the gross

rate of return to capital in total manufacturing. The horizontal axis in panel a shows

πt measured in standard deviations of the mean µ. Hence, a firm with average short-

run profitability is represented by the number 0 on the horizontal axis. The estimated

steady-state gross rate of return for a firm with average short-run profitability is 25.5

percent, see the curve referred to as "rate of return in steady state" in panel a. The small

difference between this estimate (25.5 percent) and the estimate of the neoclassical gross

rate of return to capital (24 percent) reflects that cost of adjustment, measured by the

parameter s, is moderate; the estimate of s is 0.85 for total manufacturing, which is not

much lower than 1 (the neoclassical case).

Second, by averaging the observed gross rate of return over all firms, we obtain a rate

of return slightly below 24 percent for total manufacturing —see the line referred to as

17Without adjustment cost, it can be shown that K∗(πt)κ−1 = E(eπt+1 |πt)−1(r + δ)/κ. In steady
state, the realized gross rate of return is therefore Πt+1/K

∗(πt) = eπt+1E(eπt+1 |πt)−1(r + δ)/κ. The
steady-state gross rate of return, given πt, is then (r + δ)/κ, which is independent of πt.
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"empirical average" in panel a in Figure 1. Finally, the dotted horizontal line in panel

a shows the unconditional expected rate of return to capital, defined as E(GR(πt)) (see

(52)), where the unconditional expectation is evaluated using the stationary (invariant)

distribution of πt (see (25)). For total manufacturing, the unconditional expected gross

rate of return to capital is around 25.5 percent, that is, almost identical to the estimated

rate of return to capital in steady state for a firm with average short-run profitability.

[Figure 1 here]

7.3 The probability to exit

We now turn to the steady-state relationship between short-run profitability and the exit

probability; that is, the probability that a firm will exit during the next year. This

relationship is shown as a solid curve in panel b in Figure 1 for total manufacturing.

Similar to panel a, the horizontal axis shows πt measured in standard deviations of the

mean µ. The solid curve shows that when a firm is in steady state, that is, Kt = K∗(πt),

(hypothetical) higher short-run profitability reduces the exit probability (when the stock

of capital is immediately adjusted to the new steady-state level). A firm with average

short-run profitability (πt = µ), and equipped with the corresponding steady-state stock

of capital, has an exit probability of around three percent. A decrease by two standard

deviations from the average short-run profitability raises the exit probability by almost

one percentage point.

To illustrate how the exit probability depends on the stock of capital, in panel b we

have included curves that show the exit probability when the stock of capital is fixed

at ’low’and ’high’levels. The two fixed values are the 10th and 90th percentiles in the

empirical distribution of capital in total manufacturing. As seen in panel b, the exit curve

when the firm has a fixed ’high’stock of capital is below the exit curve when the firm

has a fixed ’low’stock of capital. This is in line with a number of empirical studies that

found that the larger the firm, the lower the probability to exit; some examples include

Olley and Pakes (1996), Disney et al. (2003), and Foster et al. (2008). Note that the

distance between the two curves reflects the estimated s (the price of old capital relative

to that of new capital); if, hypothetically, s = 1 (the neoclassical case), there should be

no difference between the two curves.
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The horizontal line in panel b represents the expected exit probability. This number

has been calculated analogously to E(GR(πt)) (see (52)); that is, by taking the expec-

tation of the steady-state exit probability with respect to the unconditional distribution

of πt. As seen in panel b, the expected exit probability is close to the exit probability

of the firm with average short-run profitability and a corresponding steady-state stock of

capital.

So far we have illustrated how the estimated exit probability depends on short-run

profitability and the stock of capital. We now discuss how well our model predicts exits.

To this end it is expedient to construct an ROC curve for total manufacturing (see panel

c in Figure 1).18 This is handled as follows. First, we use the estimated model to calculate

the probability that a firm will exit during the next year. Next, we choose a threshold

probability p and divide firms into two groups; those having a probability of at least p

to exit, and those having a lower probability. Among firms with a probability to exit of

at least p, the share that did exit the next year is termed the true positive rate, whereas

the share of firms that did not exit is termed the false positive rate. For each p, the two

observed exit rates represent one point on the ROC curve. By increasing p from 0 to 1,

we construct the entire ROC curve.

The dotted line in panel c corresponds to the case in which the false positive rate

always equals the true positive rate, in which case the model is worthless. The success

of the model to predict exit is measured by the area under the ROC curve. As a rule of

thumb, if the area exceeds 0.9, the test is regarded as excellent. For total manufacturing,

the area under the ROC curve is slightly below 0.80.

To learn more about the ability of the model to predict exit, we now examine how the

probability to exit varies between exiting firms and firms that did exit in the sample period;

the latter group is termed non-exiting firms. An exiting firm is termed a closing-down

firm in its last year of operation. For each closing-down firm, we calculate the estimated

probability to exit during the next year i) 1 year prior to observed exit (“closing-down

firms”); ii) 2 years prior to observed exit (“closing-down firms, lagged 1 year”); and iii) 4

years prior to observed exit (“closing-down firms, lagged 3 years”). Assume a firm exited in

18ROC (Receiver Operating Characteristic) curves are common in medicine to assess how well a decision
rule, using clinical results, predicts a disease; for example, see van Erkel and Pattynama (1998). To
measure the degree of predictability of the test, the area under the ROC curve is calculated; it is 1 if the
test is perfect and 0.5 if the test is worthless.
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2001; that is, its last full year of operation was 2000. We then calculate i) the probability

in 2000 that this firm would exit in 2001 (“closing-down firms”), ii) the probability in

1999 that this firm would exit in 2000 (“closing-down firms, lagged 1 year”), and iii)

the probability in 1997 that this firm would exit in 1998 (“closing-down firms, lagged 3

years”). These three probabilities are assigned to the year 2000; that is, the firm’s last

year of operation. This procedure is undertaken for all exiting firms. Finally, for each year

and for each of the three types of exit probability, we calculate the unweighted average

over firms, see panel d in Figure 1.

By construction, for each year t, the three graphs for closing-down firms contain the

same firms. Hence, we can compare how the (annual) exit probability of firms evolves

over time as firms approach their observed year of exit. As seen from panel d, the exit

probability increases somewhat over time as firms get closer to their observed exit year;

that is, in most years, the graph for the closing-down firms is above the graph for the

closing-down firms lagged 1 year, which is above the graph for the closing-down firms

lagged 3 years.19 However, there is no sharp increase in the exit probability in the last

year prior to exit. On the other hand, the three graphs for the closing-down firms lie

above the graph for the non-exiting firms —the latter graph shows, for each year t, the

average (annual) exit probability of operative firms that did not exit in the sample period.

Hence, our model discriminates between closing-down firms and firms that did not exit.

Our results suggest that the main characteristic of an exiting firm is not that its

annual exit probability is much higher than that of a non-exiting firm, but rather that the

difference in annual exit probabilities is highly persistent. Therefore, it is the cumulated

effect of higher annual exit probabilities over many years —compared with the average

firm —that causes a firm to exit. In economic terms, if a firm over a long period of time

has a low expected value of continuation relative to the expected value of exit, then the

firm has a high probability to exit.

7.4 Capital adjustment cost

In our model, we find moderate cost of capital adjustment; the estimates of the parameter

s (the resale price of capital relative to the price of new capital) are in the range of 0.70 to

19The increase in the exit probabilities for firms exiting after 2008 reflects the financial crises from 2008
to 2010.
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0.93 (see Section 7.1). In the literature, there has been much discussion on whether there

is significant cost of capital adjustment. A key contribution in the empirical literature

is Cooper and Haltiwanger (2006), who use GMM to estimate structural parameters of

capital adjustment costs. They specify four types of capital adjustment costs: i) strictly

convex cost of adjustment; ii) a cost of adjustment that is proportional to the stock

of capital; iii) a specific percentage drop in plant productivity triggered by investment;

and iv) a wedge between the acquisition and resale price of capital. Using a balanced

panel of approximately 7000 large US manufacturing plants that were continuously in

operation between 1972 and 1988, they estimate models with different combinations of

these adjustment cost types. In general, they report significant results. In the case of a

specific percentage drop in plant productivity triggered by investment, that is, type iii) of

capital adjustment cost, their estimate is 20 percent, which is close to what Caballero and

Engel (1999) obtained for a similar specification (16 percent). For the specification which

is most similar to our model —cost of adjustment of type iv) —Cooper and Haltiwanger

(2006) found that the price of old capital relative to that of new capital (s) is 80 percent,

which is similar to our estimate for total manufacturing (0.85), see Table 3.

Also Hall (2004) estimates adjustment cost for capital. His approach relies on esti-

mating Euler equations for factor demand, using US annual data for factor inputs for

two-digit industries for the period 1948-2001. In contrast to Cooper and Haltiwanger

(2006), Caballero and Engel (1999), and us, Hall (2004) finds small capital adjustment

cost.

Above, we estimated how the gross rate of return to capital, and the exit probability,

depend on short-run profitability (πt) when firms have the steady-state stock of capital,

K∗(πt). We now test the robustness of these relationships with respect to the parameter

s (the resale price of capital relative to the price of new capital). To this end, we solve the

model when, cet. par., s takes the value 0 or 1. The first case (s = 0) represents a situation

in which the resale value of acquired capital is zero. The second is the neoclassical case

(s = 1); the acquisition price of a unit of capital equals the resale price. In the latter case,

the price of capital is independent of vintage.

Panel a in Figure 2 shows the relationship between short-run profitability and the

steady-state stock of capital for three alternative values of s (0, 0.85, and 1) for total
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manufacturing (s was estimated to 0.85 for total manufacturing, see above). As seen

from the figure, for all cases the steady-state stock of capital is increasing in short-run

profitability. Roughly, for a given level of short-run profitability, the higher s, the higher

the steady-state stock of capital. However, the differences are small; for very low levels

of short-run profitability, there is de facto no difference.

[Figure 2 here]

We next examine how alternative values of s influence the following three relationships

when firms have their steady-state stock of capital: i) the relationship between short-run

profitability and the gross rate of return to capital; ii) the relationship between short-run

profitability and the net present value of continuing production rather than exiting; and

iii) the relationship between short-run profitability and the exit probability.

Panel b in Figure 2 shows the relationship between short-run profitability and the gross

rate of return to capital (for total manufacturing). Without cost of capital adjustment

(s = 1), we obtain the standard neoclassical result: the rate of return to capital is

independent of short-run profitability. In contrast, with cost of capital adjustment (s < 1),

the rate of return to capital is increasing in short-run profitability. Moreover, for any given

level of short-run profitability, the rate of return to capital is higher when there is complete

irreversibility (s = 0) than when there is partial irreversibility (s = 0.85). This ranking

might, however, be ambiguous because more capital has two counteracting effects on the

gross rate of return to capital (Πt+1/Kt): more capital (K) has a direct negative effect

(the denominator increases), but it has also an indirect positive effect because operating

surplus (Π) increases (the elasticity of operating surplus with respect to capital is κ). Our

result —higher return to capital for s = 0 than for s = 0.85 —reflects that the steady-

state stock of capital is higher when s = 0.85 than when s = 0, and this (direct) effect

dominates.

Panel c in Figure 2 shows the relationship between short-run profitability and the

difference between the present value of continuing production and the present value to

exit; henceforth, we term this difference the incremental value of continuing production.

For all depicted values of s, the incremental value is increasing in short-run profitability.

Further, for any level of short-run profitability exceeding the mean µ, the incremental
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value is highest under complete irreversibility (s = 0). This reflects that for s = 0 (old

capital has no value), the value of exit does not increase in the stock of capital.

Finally, panel d in Figure 2 shows the relationship between short-run profitability and

the probability to exit. Exit probabilities are decreasing in short-run profitability, and for

any level of short-run profitability exceeding µ = 0, the exit probability is lowest under

complete irreversibility (s = 0). This result simply reflects that the incremental value of

continuing operation is highest under complete irreversibility (see discussion above).

7.5 Alternative specification of the model

In our model, the producer compares the value of continuing production, ν(St, 1), see

(22), to the (scrap) value he receives if the firm exits; ν(St, 0) = −c(−(1 − δ)Kt−1) (see

(21)). As discussed in Section 1, many papers in the literature rely on the simplifying

assumption that the scrap value is exogenous; for example, see Olley and Pakes (1996).

We now examine the consequences of this alternative assumption within our framework.

In the alternative model, ν(St, 0) = Φ, i.e., the scrap value is constant.20 Below, we

refer to this model as the “restricted structural model.”We want to compare the basic

structural model to the restricted one. We do so by i) running a specification test for

both models, and ii) comparing their goodness-of-fit properties. Because the models are

non-nested, we do not test one model against the other in the formal sense of statistical

hypothesis testing.

Regardless of whether we consider our basic model or the alternative model with fixed

scrap value, the conditional exit probability is influenced by short-run profitability and

the stock of capital, and it is monotonically increasing in ν(St, 0)−ν(St, 1). In particular,

the partial effect of changing capital on the exit probability is captured by the shifts

shown in panel b in Figure 1. If, however, either of the models is misspecified, we expect

that including Kt−1 as a separate control variable for the exit probability would (at least

in large samples) lead to a rejection of the hypothesis that the coeffi cient of Kt−1 is zero.

Hence, we estimate the augmented exit probability model

pAug(St) =
1

1 + exp {−[τ (ν(St, 0)− ν(St, 1)) + βKt−1 + ξ0]} ,

20Note that a random term in the scrap value is taken into account through the error term ε(0) in (16).
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and test the hypothesis β = 0. If the structural model is correctly specified, see (23), the

indirect inference estimator of β will tend to be zero with probability one.21

The results of the specification test for total manufacturing are shown in Table 4.

We display the estimates for the auxiliary parameter β and the parameters τ and s in

the partial quasi log-likelihood function (36). In addition, the table shows the value of

the partial quasi log-likelihood function and the corresponding ROC value (i.e., the area

under the ROC curve). The results are quite striking: the estimate of β in our basic model

(augmented with the auxiliary parameter) is -0.03, with a standard error of 0.02. This

gives a t-ratio of -1.5, which is not significant at conventional levels.22 The ROC values

of the basic model and the model augmented with the auxiliary parameter β are equal.

In stark contrast, the structural model with fixed scrap value does not capture the effect

of capital on the exit probability in an adequate manner. The estimate of β is negative

(-0.21), and with a t-ratio of −7, the restriction β = 0 is clearly rejected. Moreover,

the model with fixed scrap value has a partial quasi log-likelihood value of about 200

points, and an ROC value of 0.05 points, lower than the basic model. We also note that

the estimate of s is significantly lower in the model with fixed scrap value (0.55) than in

the basic structural model (0.85). To sum up, the results in Table 4 provide substantial

evidence that the model with fixed scrap value fails the specification test, and that it fits

the data significantly worse than our basic structural model.

As a final specification test, we consider the limiting case when the coeffi cient τ ap-

proaches infinity in (22) and (23). Define

Gτ ,ξ0(ν(St+1, 0), ν(St+1, 1)) =
1

τ
ln [exp(τν(St+1, 0) + ξ0) + exp(τν(St+1, 1))] . (53)

In the limit

lim
τ−→∞

Gτ ,ξ0(ν(St+1, 0), ν(St+1, 1)) = max(ν(St+1, 0), ν(St+1, 1)). (54)

Inserting (53) and (54) in (22), and assuming ν(St+1, 0) = Φ, gives a specification which

is identical to that in Olley and Pakes (1996). An implication of this specification is that

the exit decision becomes deterministic: the firm will exit in t if and only if Φ > ν(St, 1).

21This specification test is analogous to the one used by Rust (1987) to test a conditional independence
assumption in a dynamic discrete-choice model.
22Although the partial quasi log-likelihood value is 5 points higher in the augmented model, the usual

likelihood-ratio test does not apply here.
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However, the deterministic case is clearly rejected by our estimate of τ ; the exit decision

is influenced by a highly important noise component, which makes the timing of exit hard

to predict, given our state variables.

8 Conclusion

In the Introduction we raised three questions: "Is there a relationship between firm exit

and profitability?", "What causes firms to exit?", and "What are the characteristics that

distinguish exiting firms from non-exiting firms?" Using a structural econometric model

we have derived explanatory variables from economic theory and estimated the model for

start-up firms in three Norwegian manufacturing industries separately, as well as for total

manufacturing.

We find that when exit is defined as a state in which production at the site has come

to a permanent stop, increased profitability significantly lowers the exit probability; or,

put differently, low profitability causes firms to exit. We have also found a clear difference

in the estimated exit probabilities between firms that exited in the sample period (1994—

2012) and those that did not exit. According to our results, exiting firms differ from

non-exiting firms as their annual exit probabilities are persistently higher. Put differently:

if, over a long period of time, the expected value of continuing production is low relative

to the expected value of exit, the firm has a high probability to exit. We also find that

exiting firms are not characterized by having a very high exit probability just prior to

exit, which reflects that there are no (negative) profitability shocks in the last years prior

to exit. However, the estimated probability to exit during the next year tends to increase

as the firm approaches its final year of operation.

Our data suggest a rather weak relationship between profitability and exit (see the

discussion in Section 1). Yet, our estimation results clearly indicate such a relationship.

We believe this shows the power of econometric modeling and methods. For example,

in our theory model cost of capital adjustment, which is captured by the price of old

capital relative to that of new capital, is a key factor in determining exit. Although

this type of cost is not included in our data, we find, through estimating a number of

structural parameters by indirect inference, that for total manufacturing, the price of old

capital relative to that of new capital is significantly lower than 1. Hence, cost of capital
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adjustment matters for the exit decision.

We have estimated a structural model where firms’exit and investment decisions are

the solution to a discrete-continuous dynamic programming problem. This model has

been tested against a simpler model with exogenous scrap value, which is a common

assumption in empirical papers, see, for example, Olley and Pakes (1996). The result

suggests that the model with fixed scrap value fits the data significantly worse than our

theory-consistent econometric model.

In our model, identification is facilitated by designing an auxiliary model that has

the same parameters as the structural model. In general, it may be diffi cult to identify

parameters in dynamic structural models, see, for example, Magnac and Thesmar (2002)

and Collard—Wexler (2013). Aguirregabiria and Suzuki (2014) examine identification in

a dynamic structural model with fixed entry cost, fixed cost of operation, and fixed scrap

value. They argue that identification requires that one of the three fixed costs must be

set to zero. This restriction has implications for the interpretation of the estimates. If the

restriction is specified as setting the entry cost equal to zero, the fixed cost of operation

in their model is equal to the actual fixed cost of operation plus the difference between

current entry cost and expected entry cost in the next period, discounted to the current

period. The implications of omitting the entry decision, as we do, is that estimates are

contingent on firms that have entered the market. This should not be mixed with the

implications of including the entry decision in the model and imposing that there is no

cost of entry.
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Appendix

Part I: Proof of Proposition 2

By definition, Y (s)
i (θ) is identical to Y

∗(s)
i (θ) except that ẑ(s)

i (θ) is replaced with

z
(s)
i (θ) = (z

(s)
i2 (θ), ..., z

(s)
i,T+1(θ)). From Proposition 1:

Eθ(z
(s)
it (θ)|W (s)

i,1:t(θ), z
(s)
i,t−1(θ)) =

(
1− pθ(K(s)

i,t−1(θ), π
(s)
it (θ))

)
z

(s)
i,t−1(θ)

(recall that z(s)
i,t−1(θ) = 0 is an absorbing state). By the rule of double expectation:

Eθ(z
(s)
it (θ)|W (s)

i,1:t(θ)) =
(

1− pθ(K(s)
i,t−1(θ), π

(s)
it (θ))

)
Eθ(z

(s)
i,t−1(θ)|W (s)

i,1:t(θ))

=
(

1− pθ(K(s)
i,t−1(θ), π

(s)
it (θ))

)
Eθ(z

(s)
i,t−1(θ)|W (s)

i,1:t−1(θ)) (55)

where the last equality follows from conditional independence of z(s)
i,t−1(θ) and W

(s)
it (θ)

givenW (s)
i,1:t−1(θ). SinceEθ(z

(s)
it (θ)|W (s)

i,1:t(θ)) and ẑ
(s)
it (θ) satisfy the same difference equation

(compare A.5 and (55)), (47) follows from the initial condition ẑ(s)
i1 (θ) = z

(s)
i1 (θ) = 1.

To prove (48), define Ŵ (s)
i,1:t(θ) = {W (s)

ik (θ), π̂
(s)
ik (θ)k∧T}tk=1. Then

Eθ

[
∂l(θa|Y (s)

i (θ))

∂θa3
− ∂l(θa|Y ∗(s)i (θ))

∂θa3

]

=
T∑
t=1

Eθ

Eθ (z(s)
i,t+1(θ)− ẑ(s)

i,t+1(θ)
∣∣∣ Ŵ (s)

i,1:t+1(θ)
) ∂ ln

(
1− p(θa1 ,θ

a
2 ,θ

a
3)(K

(s)
it (θ), π̂

(s)
i,t+1∧T (θ))

)
∂θa3

+ Eθ

(
z

(s)
it (θ)− ẑ(s)

it (θ)− (z
(s)
i,t+1(θ)− ẑ(s)

i,t+1(θ))
∣∣∣ Ŵ (s)

i,1:t+1(θ)
) ∂ ln p(θa1 ,θ

a
2 ,θ

a
3)(K

(s)
it (θ), π̂

(s)
it (θ))

∂θa3

]
= 0 (56)

where the last equality follows from

Eθ(z
(s)
i,t+1(θ)|Ŵ (s)

i,1:t+1(θ)) = Eθ(z
(s)
i,t+1(θ)|W (s)

i,1:t+1(θ)) = ẑ
(s)
i,t+1(θ)

Eθ(z
(s)
it (θ)|Ŵ (s)

i,1:t+1(θ)) = Eθ

(
z

(s)
it (θ)|W (s)

i,1:t(θ)
)

= ẑ
(s)
it (θ).

Equation (56) trivially extends to the other components of the score vector. Hence,

Eθ

[
∂l(θa|Y ∗(s)i (θ))

∂θa

]
= Eθ

[
∂l(θa|Y (s)

i (θ))

∂θa

]
= Eθ

[
∂l(θa|Yi)
∂θa

]
= b(θ, θa)

and (48) follows.
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Part II: Illustration of Proposition 2

We consider the simplified model

zi,t+1 = 1(θyi + εit > 0)zit

where 1(·) is the indicator function, θ is the unknown structural parameter, εit ∼ N (0, 1)

and yi has a known covariate distribution. The conditional probability of exit (given yi

and zit = 1) is pθ(yi) = Φ(−θyi). The auxiliary probability is assumed to be pθa(yi) = θa.

Thus, the auxiliary model replaces the firm-varying exit probabilities with a fixed auxiliary

parameter, θa. Let Yi = (yi, zi2, ..., zi,τ i+1) be the realized data. Then the quasi log-

likelihood is
N∑
i=1

l(θa|Yi) =

N∑
i=1

T∑
t=1

[
zi,t+1 ln(1− θa) + (zit − zi,t+1) ln(θa)

]
(zi1 = 1), and the quasi-likelihood estimator is

θ̂a =
N∑
i=1

T∑
t=1

(zit − zi,t+1)/
N∑
i=1

T∑
t=1

zit.

For notational simplicity, we will hereafter assume that T = ∞ (each firm is observed

until it exits). Because Eθ (
∑∞

t=1(zit − zi,t+1)|yi) =
∑∞

t=1(1−Φ(−θyi))t−1Φ(−θyi) = 1 and

Eθ (
∑∞

t=1 zit|yi) = 1/Φ(−θyi), we have

θ̂a →P
1

Eθ0(1/Φ(−θ0yi))
≡ θa∗

—the pseudo-true parameter. The binding function is (see (39)):

b(θ, θa) ≡ Eθ

(
∂l(θa|Yi)
∂θa

)
= −Eθ(1/Φ(−θyi))− 1

1− θa +
1

θa

(which satisfies b(θ0, θa∗) = 0). The simulated trajectory is: Y ∗(s)i (θ) = (y
(s)
i , ẑ

(s)
i2 (θ), ẑ

(s)
i3 (θ), ...),

where ẑ(s)
it (θ) = (1 − Φ(−θy(s)

i ))ẑ
(s)
i,t−1(θ) = Φ(θy

(s)
i )ẑ

(s)
i,t−1(θ) (with ẑ(s)

i1 (θ) = 1). Hence,

ẑ
(s)
it (θ) = Φ(θy

(s)
i )t−1 = Eθ(z

(s)
it (θ)|y(s)

i ) for t = 1, 2, ... . This confirms (47). Furthermore,

∞∑
t=1

ẑ
(s)
i,t+1(θ) = 1/Φ(−θy(s)

i )− 1 and
∞∑
t=1

(ẑ
(s)
it (θ)− ẑ(s)

i,t+1(θ)) = 1.

Thus

Eθ(
∂l(θa|Y ∗(s)i (θ))

∂θa
) = −Eθ(1/Φ(−θy(s)

i ))− 1

1− θa +
1

θa

which is equal to the binding function b(θ, θa), since y(s)
i has the same distribution as yi.

This confirms (48).
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Online Appendix: Supplementary materials

Supplementary figures and proofs can be found online at https://doi.org/ ....
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Figure 1: Estimates for total manufacturing: gross rate of return to capital vs. short-run
profitability (Panel a), exit probability vs. short-run profitability (Panel b), ROC curve
(Panel c), and average exit probability by groups (Panel d)
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Figure 2: Estimated effects of shift in the cost of capital adjustment parameter (s). Total
manufacturing
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Online Appendix A: Supplementary figures

Figure A.1: Distribution of log of annual changes in capital, person-hours and materials.

Kernel density estimates. Total manufacturing, 1994—2012
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Figure A.2: The graphs show typical solutions of the difference v(St, 1)− v(St, 0) (the

net value of continuing production) as a function of Kt−1 for different values of s

(s = 0, 0.5, 1) and πt ("low profitability" and "high profitability").
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Figure A.3: Estimated gross rate of return to capital, 1994-2012
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Figure A.4: Estimated exit probability, 1994-2012
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Figure A.5: ROC curves, 1994-2012
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Figure A.6: Estimated average exit probability by groups, 1995—2012
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Online Appendix B: Proofs

Note: The references Equation (20), Equation (21), etc. below refer to the main article,

whereas (B.1), (B.2), etc. refer to the Online Appendix.

Part I: Proof of Proposition 1

Let ν(St, zt) denote the net present value given St and zt:

ν(St, zt) = max
It

{
u(St, It, zt)− Πt +

1

1 + r
E [V (St+1, εt+1)|St, It, zt]

}
. (B.1)

Then Equation (20) follows by definition. If zt = 0, t is the terminal period and ν(St, 0) =

u(St,−(1− δ)Kt−1, 1)− Πt = −c(−(1− δ)Kt−1), which proves Equation (21).

To prove Equation (22), consider a T—period horizon problem where VT (St, εt) and

νT (St, zt) denote value functions for this problem:

VT (St, εt) = max
zt

[Πt + νT (St, zt) + εt(zt)]

(cf. Equation (20)). Obviously, νT (St, 1) = ν(St, 0) for all T . Given the initial condition

ν1(St, 1) = ν1(St, 0) (in the one-period problem there is no distinction between "exiting"

and "continuing", we obtain, for T = 1, 2, 3, ... :

νT+1(St, 1) = max
It

{
−c(It) +

1

1 + r
E [VT (St+1, εt+1)|St, It, zt = 1]

}
= max

It

{
−c(It) +

1

1 + r

∫
max {Πt+1 + νT (St+1, 0) + εt+1(0),Πt+1 + νT (St+1, 1) + εt+1(1)}

×h(εt+1)dεt+1g(dSt+1|St, It)}

= max
It

{
−c(It) +

1

1 + r

∫ [
Πt+1 +

1

τ
ln [exp(−τc(−(1− δ)Kt) + ξ0) + exp(τνT (St+1, 1))]

]
×g(dSt+1|St, It)} (B.2)

where the integrand after the last equality is the so-called "social surplus" function. The

last equality follows from Equation (17) and a well-known property of the extreme value

distribution (see Rust, 1994). Under the regularity conditions of Rust (1994), (B.2) defines

a contraction mapping so that

sup
S
|νT+1(St, 1)− νT (St, 1)| −→ 0 as T −→∞.
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Then there exists a limiting function ν(St, 1) that satisfies Equation (22). Finally, from

Equation (20):

Pr(zt = 0|St, zt−1 = 1) = Pr (ν(St, 0) + εt(0) > ν(St, 1) + εt(1)|St)

= Pr (τν(St, 0) + ξ0 + (τεt(0)− ξ0) > τν(St, 1) + τεt(1)|St)

=
1

1 + exp{−[τν(St, 0)− τν(St, 1) + ξ0]}

where we in the last equation used that τεt(z)− ξz has a standard extreme value distri-

bution and is independent for z = 0, 1. Using Equation (21), Equation (23) now follows.

Q.E.D.

Part II: The method of successive approximations

Define

Ψ̃θ(ν
(n)
θ )(K(i), π(j), I) = −cs(I) +

1

(1 + r)

∑
j′

[
exp(π(j′))[(1− δ)K(i) + I]κ

1 + ϑ1

+
1

τ
ln
[
exp(τs(1− δ)[(1− δ)K(i) + I] + ξ0) + exp(τν

(n)
θ ((1− δ)K(i) + I, π(j′)))

]]
gD(ϕ,µ,σ)(π(j′)|π(j))

(B.3)

Given a value function ν(n)
θ (K, π) defined on the discrete state space K × A , define the

corresponding optimal investment function:

i
(n)
θ (K(i), π(j)) = arg max

{I:(1−δ)K(i)+I∈K}
Ψ̃θ(ν

(n)
θ )(K(i), π(j), I) (B.4)

Next, define

Ψ
(n)
θ (ν

(n)
θ )(K(i), π(j)) = −cs(i(n)(K(i), π(j))) +

1

1 + r
×∑

j′

[
exp(π(j′))K(i′)

κ

1 + ϑ1

+
1

τ
ln
[
exp(τs(1− δ)K(i′) + ξ0) + exp(τν

(n)
θ (K(i′), π(j′)))

]]
gD(ϕ,µ,σ)(π(j′)|π(j))

with K(i′) = (1 − δ)K(i) + i
(n)
θ (K(i), π(j)). The method of successive approximations gen-

erates a sequence {ν(n)
θ } as follows: Let ν

(1)
θ = 0, and set

ν
(n+1)
θ = Ψ

(n)
θ (ν

(n)
θ ) (B.5)

until convergence: ν(n+1)
θ −→ νDθ . The performance of the solution algorithm can be im-

proved if we choose ν(n+1)
θ as the solution to the fixed-point problem ν

(n+1)
θ = Ψ

(n)
θ (ν

(n+1)
θ )
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(instead of the simple updating (B.5)). The latter is most effi ciently done by means of

Newton-Kantorovich iterations (see Iskhakov et al., 2016).

Part III: Continuity issues

Define

Ψθ(ν
(n)
θ )(K(i), π(j)) = max

{I:(1−δ)K(i)+I∈K}
Ψ̃θ(ν

(n)
θ )(K(i), π(j), I)

(cf. (B.3)). The method of successive approximations (see Part II) is then equivalent to

generating:

ν
(n+1)
θ (K(i), π(j)) = Ψθ(ν

(n)
θ )(K(i), π(j)) (B.6)

with ν(1)
θ = 0. Assume that ν(n)

θ (K(i), π(j)) is continuous in θ for given (K(i), π(j)). Then

ν
(n+1)
θ (K(i), π(j)) is also continuous in θ, being the max of a finite number of functions

Ψ̃θ(ν
(n)
θ )(K(i), π(j), I) that are continuous in θ.

We shall first establish the continuity of νDθ (K(i), π(j)) on a compact subset Θ of RK .

Define

M = sup
θ∈Θ
||Ψθ(ν

(1)
θ )|| <∞

where || · || is the supremum norm. From the contraction mapping property of (B.6) (see

Equation (2.16) in Rust, 1994):

sup
θ∈Θ
||ν(n+1)

θ − ν(n)
θ || ≤

1

1 + r
sup
θ∈Θ
||ν(n)

θ − ν
(n−1)
θ ||

≤ 1

(1 + r)n−1
M.

Since
∑∞

n=1
1

(1+r)n−1M = 1+r
r
M < ∞, it follows from Theorem 7.10 in Rudin (1976)

that ν(n+1)
θ (K(i), π(j)) =

∑n
i=1(ν

(i+1)
θ (K(i), π(j))− ν(i)

θ (K(i), π(j))) converges uniformly on Θ

towards νDθ (K(i), π(j)). Moreover, since ν
(n)
θ (K(i), π(j)) is continuous in θ (n = 1, 2, 3, ...), it

follows from Theorem 7.11 (ibid) that the limit function νDθ (K(i), π(j)) is also continuous

in θ.

Next, define νD̃θ (K, π) as the bilinear interpolation of νDθ (K(i), π(j)) on the grid squares

[K(i), K(i+1)]× [π(j), π(j+1)] and

iD̃θ (K(i), π(j)) = arg max
{I:I≥−(1−δ)K(i)}

Ψ̃θ(ν
D̃
θ )(K(i), π(j), I)

(cf. (B.4)). For given (K(i), π(j)), the maximand Ψ̃θ(ν
D̃
θ )(K(i), π(j), I) is continuous in θ

and I, with a unique argmax iD̃θ (K(i), π(j)). It follows that iD̃θ (K(i), π(j)) is continuous in

θ. We extend iD̃θ (K(i), π(j)) to any (K, π) by bilinear interpolation.
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Finally, if we in A.1—A.7 (in the main article) replace νθ and iθ with νD̃θ and i
D̃
θ , then the

continuity of K(s)
it (θ) follows recursively from A.6 (with initial condition K(s)

i0 (θ) = Ki0),

whereas the continuity of ẑ(s)
it (θ) follows from A.5 and Equation (28): since K(s)

i,t−1(θ) and

π
(s)
it (θ) are continuous in θ, and νD̃θ (K, π) is continuous in both θ and (K, π), it follows

that νD̃θ (K
(s)
i,t−1(θ), π

(s)
it (θ)) is continuous in θ.
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