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a b s t r a c t

This paper is concerned with parameter estimation and inference in a cointegrating regression, where
as usual endogenous regressors as well as serially correlated errors are considered. We propose a simple,
newestimationmethodbased on an augmentedpartial sum (integration) transformation of the regression
model. The new estimator is labeled integrated modified ordinary least squares (IM-OLS). IM-OLS is
similar in spirit to the fullymodifiedOLS approach of Phillips andHansen (1990) and also bears similarities
to the dynamic OLS approach of Phillips and Loretan (1991), Saikkonen (1991) and Stock and Watson
(1993), with the key difference that IM-OLS does not require estimation of long run variance matrices
and avoids the need to choose tuning parameters (kernels, bandwidths, lags). Inference does require that
a long run variance be scaled out, and we propose traditional and fixed-b methods for obtaining critical
values for test statistics. The properties of IM-OLS are analyzed using asymptotic theory and finite sample
simulations. IM-OLS performs well relative to other approaches in the literature.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Cointegration methods are widely used in empirical macroeco-
nomics and empirical finance. It is well known that in a cointe-
grating regression the ordinary least squares (OLS) estimator of the
parameters is super-consistent, i.e. converges at rate equal to the
sample size T . When the regressors are endogenous, the limiting
distribution of the OLS estimator is contaminated by so-called sec-
ond order bias terms, see e.g. Phillips and Hansen (1990). The pres-
ence of these bias terms renders inference difficult. Consequently,
several modifications to OLS that lead to zero mean Gaussian mix-
ture limiting distributions have been proposed,which in turnmake
standard asymptotic inference feasible. These methods include
the fully modified OLS (FM-OLS) approach of Phillips and Hansen
(1990) and the dynamic OLS (DOLS) approach of Phillips and Lore-
tan (1991); Saikkonen (1991) and Stock and Watson (1993).

The FM-OLS approach uses a two-part transformation to re-
move the asymptotic bias terms and requires the estimation of long
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run variancematrices (as discussed in detail in Section 2). TheDOLS
approach augments the cointegrating regression by leads and lags
of the first differences of the regressors to correct for the (second-
order) endogeneity bias. Both of these methods require tuning pa-
rameter choices. For FM-OLS a kernel function and a bandwidth
have to be chosen for long run variance estimation. For DOLS the
number of leads and lags has to be chosen and if the DOLS esti-
mates are to be used for inference, a long run variance estimator,
with an ensuing choice of kernel and bandwidth, is also required.

Standard asymptotic theory does not capture the impact of ker-
nel and bandwidth choices on the sampling distributions of esti-
mators and test statistics based upon them. In order to shed light
on the impact of kernel and bandwidth choice on the FM-OLS es-
timator, the first result of the paper derives the so-called fixed-b
limit of the FM-OLS estimator. Fixed-b asymptotic theory has been
put forward by Kiefer and Vogelsang (2005) in the context of sta-
tionary regressions to capture the impact of kernel and bandwidth
choices on the sampling distributions of HAC-type test statistics.
The benefit of this approach is that critical values that reflect kernel
and bandwidth choices are provided. The fixed-b limiting distribu-
tion of the FM-OLS estimator features highly complicated depen-
dence upon nuisance parameters and does not lend itself towards
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the development of fixed-b inference. We also show that the limit
for b → 0of the fixed-b limiting distribution of the FM-OLS estima-
tor is the usual asymptotic distribution derived for the FM-OLS es-
timator in Phillips and Hansen (1990). In deriving the fixed-b limit
of the FM-OLS estimator we derive the fixed-b limit of the half long
run variancematrix, whichmay be of interest in itself because such
a result is not available in the literature up to now.

After this detailed consideration of the FM-OLS estimator, the
paper proceeds to propose a simple, tuning parameter free new es-
timator of the parameters of a cointegrating regression. This esti-
mator leads to a zero mean Gaussian mixture limiting distribution
and implementation does not require the choice of any tuning pa-
rameters. The estimator is based onOLS estimation of a partial sum
transformation of the cointegrating regressionwhich is augmented
by the original regressors, hence the name integratedmodified OLS
(IM-OLS) estimator. Inference based on this estimator still requires
the estimation of a long run variance parameter. In this respect we
offer two solutions. First, standard asymptotic inference based on
a consistent estimator of the long run variance and second, fixed-
b inference. We show that the conditional asymptotic variance of
FM-OLS is smaller or equal to the conditional asymptotic variance
of the IM-OLS estimator when resorting to standard asymptotic
theory. However, when fixed-b asymptotic theory is invoked in or-
der to capture the effects of kernel and bandwidth choices it turns
out that the fixed-b limiting distribution of the FM-OLS estimator
involves a bias term, whereas IM-OLS is asymptotically bias free.
Furthermore, the fixed-b conditional asymptotic variance of the
FM-OLS estimator is much more complex than the traditional one
for which the above result concerning relative efficiency holds.

There are two other papers in the literature that develop ‘par-
tial’ fixed-b theory for inference in cointegrating regressions. Bun-
zel (2006) analyzes tests based on the DOLS estimator and derives
a fixed-b limit for a long run variance estimator constructed using
the DOLS residuals. This fixed-b limit captures the choice of ker-
nel and bandwidth but ignores the impact of lead and lag length
choices required to implement DOLS. Jin et al. (2006) develop a
partial fixed-b theory for tests based on FM-OLS. For the long run
variance estimator needed to carry out the FM-OLS transformation,
they appeal to a consistency result which ignores the impact of the
kernel and bandwidth choice on the FM-OLS estimator. Conditional
on this traditional consistency result, they derive a fixed-b limit for
a second long run variance estimator that can be used to construct
tests.

Developing useful fixed-b results for tests based on IM-OLS
leads to some new hurdles compared to both the partial fixed-b
tests developed for the FM-OLS and DOLS estimators tests and to
stationary regressions. Specifically, the OLS residuals of the IM-OLS
regression need to be further adjusted, as discussed in detail in
Sections 3 and 5, in order to obtain pivotal fixed-b test statistics. A
similar complication also arises in Vogelsang andWagner (2013a),
who consider fixed-b inference for Phillips and Perron (1988) type
unit root tests where the original OLS residuals also cannot be used
for fixed-b inference. Thus, unit root and cointegration analysis
necessitates different thinking about fixed-b inference compared
to stationary regression settings.

The theoretical analysis of the paper is complemented by a sim-
ulation study to assess the performance of the estimators and tests.
The performance is benchmarked against results obtained with
OLS, FM-OLS and DOLS. It turns out that the new estimator per-
forms relativelywell, in terms of having smaller bias and onlymod-
erately larger RMSE than the FM-OLS estimator, in line with the
theoretical findings of the paper. The larger RMSE appears to be the
price to be paid for partial summing the cointegrating regression,
which leads to a regression with I(2) regressors and I(1) errors. In
comparison DOLS has smaller bias butmuch larger RMSE. The sim-
ulations of size and power of the tests show that the developed
fixed-b limit theory well describes the test statistics’ distributions.
In particular fixed-b test statistics based on the IM-OLS estimator
lead to the smallest size distortions at the expense of only minor
losses in (size-corrected) power. This finding is quite similar to the
findings of Kiefer and Vogelsang (2005) for testing in stationary re-
gressions and thus extends one of themajor contributions of fixed-
b theory to the cointegration literature.

The paper is organized as follows: In Section 2 we present a
standard linear cointegrating regression and start by reviewing
the OLS and FM-OLS estimators and then give the fixed-b limit-
ing distribution of the FM-OLS estimator. Section 3 presents the
new IM-OLS estimator whose finite sample performance is studied
by means of simulations in Section 4. In Section 5 inference using
the IM-OLS parameter estimates is discussed, both with standard
and fixed-b asymptotic theory. The finite sample performance of
the resultant test statistics is assessed, again with simulations, in
Section 6. Section 7 briefly summarizes and concludes. All proofs
are relegated to the Appendix. Supplementary material that can
be downloaded from the authors’ homepages provides tables with
fixed-b critical values for the IM-OLS based tests for up to four inte-
grated regressors and the usual specifications of the deterministic
component (intercept, intercept and linear trend) for a variety of
kernel functions. Also MATLAB code implementing the discussed
methods is available upon request.

2. FM-OLS estimation and inference in cointegrating regres-
sions

Consider the following data generating process

yt = µ + x′

tβ + ut (1)
xt = xt−1 + vt , (2)

where yt is a scalar time series and xt is a k×1 vector of time series
with a sample of observations t = 1, 2, . . . , T available. For nota-
tional brevity here we only include the intercept µ as determinis-
tic component (this restriction is removed later when we discuss
the IM-OLS estimator in the following section). Stacking the error
processes defines ηt = [ut , v

′
t ]

′. It is assumed that ηt is a vector
of I(0) processes, in which case xt is a non-cointegrating vector of
I(1) processes and there exists a cointegrating relationship among
[yt , x′

t ]
′ with cointegrating vector [1, −β ′

]
′.

To review existing theory and to obtain the key theoretical re-
sults in the paper, assumptions about ηt are required. It is sufficient
to assume that ηt satisfies a functional central limit theorem (FCLT)
of the form

T−1/2
[rT ]
t=1

ηt ⇒ B(r) = Ω1/2W (r), r ∈ [0, 1], (3)

where [rT ] denotes the integer part of rT and W (r) is a (k + 1)-
dimensional vector of independent standard Brownian motions
and

Ω =

∞
j=−∞

E(ηtη
′

t−j) =


Ωuu Ωuv
Ωvu Ωvv


> 0,

where clearlyΩvu = Ω ′
uv . The assumptionΩvv > 0 rules out coin-

tegration in xt . Partition B(r) as

B(r) =


Bu(r)
Bv(r)


and likewise partition W (r) as W (r) = [wu·v(r),W ′

v(r)]
′, where

wu·v(r) andWv(r) are a scalar and a k-dimensional standard Brow-
nian motion respectively. It will be convenient to use Ω1/2 of the
Cholesky form

Ω1/2
=


σu·v λuv

0 Ω1/2
vv


,
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where σ 2
u·v = Ωuu − ΩuvΩ

−1
vv Ωvu and λuv = Ωuv(Ω

−1/2
vv )′. Using

this Cholesky decomposition we can write

B(r) =


Bu(r)
Bv(r)


=


σu·vwu·v(r) + λuvWv(r)

Ω1/2
vv Wv(r)


.

Next define the one-sided long run covariance matrix
Λ =


∞

j=1 E(ηt−jη
′
t), which is partitioned according to the par-

titioning of Ω as

Λ =


Λuu Λuv
Λvu Λvv


.

Note thatΩ = Σ+Λ+Λ′, withΣ = E(ηtη
′
t), which is partitioned

as

Σ =


Σuu Σuv
Σvu Σvv


.

To discuss the OLS and FM-OLS estimators for (1) definext =

[1, x′
t ]

′ and θ = [µ, β ′
]
′. Stacking all observations together gives

the matrix representation y =Xθ + u with

y =

y1
...
yT

 , X =

x
′

1
...x′

T

 , u =

u1
...
uT

 .

Using this notation, the OLS estimator is given byθ =
X ′X−1X ′y.

To state asymptotic results the following scaling matrix is needed:

A =


T−1/2 0
0 T−1Ik


.

For the OLS estimator it is well known from Phillips and Durlauf
(1986) and Stock (1987) that
T 1/2(µ − µ)

T (β − β)


= A−1 θ − θ


=

AX ′XA−1 

AX ′u


⇒


B∗

v(r)B
∗

v(r)
′dr
−1 

B∗

v(r)dBu(r) + ∆∗

vu


= Θ,

where

B∗

v(r) =


1

Bv(r)


, ∆∗

vu =


0

∆vu


, and

∆vu = Σvu + Λvu.

Unless stated otherwise, the range of integration is [0, 1] through-
out the paper.

When ut is uncorrelatedwith vt and hence uncorrelatedwith xt ,
it follows that (i) λuv = 0, ∆vu = 0, and (ii) Bu(r) is independent
of Bv(r). Because of the independence between Bu(r) and Bv(r) in
this case, one can condition on Bv(r) to show that the limiting dis-
tribution of T (β − β) is a zero mean Gaussian mixture. Therefore,
one can also show that t and Wald statistics for testing hypothe-
ses about β have the usual N(0, 1) and chi-square limits assuming
serial correlation in ut is handled using consistent robust standard
errors.

When the regressors are endogenous, the limiting distribution
of T (β − β) is obviously more complicated because of the
correlation between Bu(r) and Bv(r) and the presence of the
nuisance parameters in the vector∆vu. One can therefore no longer
condition on Bv(r) to obtain an asymptotic normal result and ∆vu
introduces an asymptotic bias. Inference is difficult in this situation
because nuisance parameters cannot be removed by simple scaling
methods.
The FM-OLS estimator of Phillips andHansen (1990) is designed
to asymptotically remove ∆vu and to deal with the correlation be-
tween Bu(r) and Bv(r). To understand how the FM-OLS estimator
works, consider the stochastic process Bu·v(r) = Bu(r) − Bv(r)′
Ω−1

vv Ωvu = σu·vwu·v(r) which, by construction, is independent of
Bv(r) = Ω

1/2
vv Wv(r). Using Bu·v(r), one can write

B∗

v(r)dBu(r) + ∆∗

vu =


B∗

v(r)dBu·v(r)

+


B∗

v(r)dBv(r)′Ω−1
vv Ωvu + ∆∗

vu. (4)

Because Bv(r) and Bu·v(r) are independent, conditioning on Bv(r)
can be used to show that


B∗

v(r)dBu·v(r) is a zero mean Gaussian
mixture.

The FM-OLS estimator rests upon two transformations. One
transformation removes the term


B∗

v(r)dBv(r)′Ω−1
vv Ωvu in (4),

whereas the other removes the ∆∗
vu term in (4). Because these

terms depend on Ω and ∆, the two transformations require es-
timates of Ω and ∆vu. Let Ω denote a nonparametric kernel esti-
mator of Ω of the form

Ω = T−1
T

i=1

T
j=1

k


|i − j|
M

ηiη′

j, (5)

whereηt = [ut , ∆x′
t ]

′ andut are the OLS residuals from (1). The
function k(·) is the kernel weighting function and M is the band-
width. Partition Ω the same way as Ω and define

y+

t = yt − ∆x′

t
Ω−1

vv
Ωvu

and

u+

t = ut − ∆x′

t
Ω−1

vv
Ωvu.

Under conditions such that Ω is a consistent estimator of Ω (see
e.g. Jansson, 2002), it follows that

AX ′u+
⇒


B∗

v(r)dBu·v(r) + ∆+∗

vu ,

where

∆+∗

vu =


0

∆+

vu


, ∆+

vu = ∆vu − ∆vvΩ
−1
vv Ωvu,

u+
= [u+

2 , . . . , u+

T ]
′ and where we use for notational simplicityX

to denote the regressors stacked for t = 2, . . . , T in FM-OLS es-
timation. Thus, using y+

t in place of yt to estimate θ removes the
B∗

v(r)dBv(r)′Ω−1
vv Ωvu term, but themodified vector∆+∗

vu remains.
The term ∆+

vu is easy to remove as follows: Define the half long
run variance ∆ = Σ + Λ and define a nonparametric kernel esti-
mator for this quantity as

∆ = T−1
T

i=1

T
j=i

k


|i − j|
M

ηiη′

j . (6)

Partition ∆ and ∆ in the same way as Ω and define ∆+
vu as∆+

vu = ∆vu − ∆vv
Ω−1

vv
Ωvu.

The FM-OLS estimator is defined asθ+
= (X ′X)−1(X ′y+

− M∗),

where

M∗
= T∆+∗

vu and y+
=

y+

2
...

y+

T

 , ∆+∗

vu =


0∆+

vu


.
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It is shown in Phillips and Hansen (1990) that

A−1 θ+
− θ


=

AX ′XA−1 

AX ′u+
− AM∗


⇒


B∗

v(r)B
∗

v(r)
′dr
−1 

B∗

v(r)dBu·v(r)

= σu·v


B∗

v(r)B
∗

v(r)
′dr
−1

×


B∗

v(r)dwu·v(r), (7)

provided that Ω and ∆+
vu are consistent. The second part of the

transformation uses M∗ to remove ∆+∗
vu , and the result for T (θ+

−

θ) is such that conditional on Bv(r), a zero mean normal limit is
obtained. The limit given by (7) is a mean zero mixture of nor-
mals. Conditional on Bv(r) the asymptotic variance is well known
to be

VFM = σ 2
u·v


B∗

v(r)B
∗

v(r)
′dr
−1

. (8)

Asymptotically pivotal t and Wald statistics with N(0, 1) and chi-
square limiting distributions can be constructed by taking into
account σ 2

u·v , the long run variance of Bu·v(r). The traditional es-
timator of σ 2

u·v is

σ 2
u·v = Ωuu − ΩuvΩ−1

vv
Ωvu, (9)

whereas an alternative estimator is given by

σ 2
u+ = T−1

T
i=1

T
j=1

k


|i − j|
M

u+

i u+′

j , (10)

whereu+

t = y+

t −µ+
− x′

t
β+. The kernel and bandwidth used to

construct σ 2
u+ are not necessarily the same as those used to con-

struct Ω and ∆.
In practice FM-OLS estimation requires the choice of bandwidth

and kernel. While bandwidth and kernel play no role asymptoti-
cally when appealing to consistency results for Ω and ∆, in finite
samples they affect the sampling distributions ofθ+ and thus of
t and Wald statistics based on the FM-OLS estimator θ+. To ob-
tain an approximation forθ+ that reflects the choice of bandwidth
and kernel, the natural asymptotic theory to use is the fixed-b the-
ory developed byKiefer andVogelsang (2005) and further analyzed
by Sun et al. (2008). Fixed-b theory has primarily been developed
for models with stationary regressors, which means that some ad-
ditionalwork is required to obtain analogous results for cointegrat-
ing regressions. Aswe shall see below, amajor difference is that the
first component ofηt , i.e.ut , is the residual from a cointegrating
regression, which leads to dependence of the corresponding limit
partial sum process (defined as Pη(r) below) on the number of in-
tegrated regressors and the deterministic components.

It is important to note that there are two papers in the literature
that develop fixed-b theory for cointegration regressions. Jin et al.
(2006) carry out a fixed-b analysis ofσ 2

u+ appealing to consistency
of Ω and∆which amounts to using the limit given by (7). They ob-
tain pivotal fixed-b limits for t and Wald statistics that differ from
the stationary regression case. Similarly, Bunzel (2006) develops a
fixed-b theory for t and Wald statistics based on DOLS and finds
that the fixed-b limits of t andWald statistics are the same as in Jin
et al. (2006).

The fixed-b theory developed by Jin et al. (2006) is only a partial
fixed-b theory as it ignores the impact ofΩ and∆ on the test statis-
tics which in turn ignores the impact of the choice of bandwidth
and kernel needed to implement Ω and ∆.1 Developing fixed-b
asymptotic theory for Ω and∆ is an important contribution of the
current paper.

A brief overview of the fixed-b theory may be useful to some
readers. Fixed-b theory obtains limits of nonparametric kernel
estimators of long run variancematrices by treating the bandwidth
as a fixed proportion of the sample size. Specifically, it is assumed
that M = bT , where b ∈ (0, 1] remains fixed as T → ∞. Under
this assumption it is possible to obtain a limiting expression for a
long run variance estimator that is a random variable depending
on the kernel k(·) and b. This is in contrast to a consistency result
where the limit is a constant, i.e. the true long run variance. Itmight
be tempting to conclude that using fixed-b theory is equivalent to
proposing a long run variance estimator that is inconsistent. This is
not the case. The long run variance estimators are given by (5) and
(6). Given a sample and a particular choice of M , the estimators
given by (5) and (6) can be imbedded in sequences that converge
to the population long run variances (consistency) or imbedded in
sequences that converge to random limits that are functions of k(·)
and b (fixed-b). It becomes a question as to which limit provides a
more useful approximation. If one wants to capture the impact of
bandwidth and kernel choice on the sampling behavior of (5) and
(6), fixed-b theory is informative while a consistency result is not.

Obtaining a fixed-b result for Ω relies upon algebra in
Hashimzade and Vogelsang (2008), extended to a multivariate
framework and taking into account the above mentioned differ-
ences (in relation to ut in a cointegration framework). The ap-
proach pursued in Hashimzade and Vogelsang (2008) is to rewriteΩ in terms of partial sums ofηt . Once the limit behavior of appro-
priately scaled partial sums ofηt is established, the fixed-b limit
for Ω follows from the continuous mapping theorem. Obtaining a
fixed-b result for ∆ requires additional calculations beyond what
is available in the existing fixed-b literature and may be of inde-
pendent interest itself.

In order to formulate the fixed-b results for Ω , ∆, andθ+ we
need to define some additional quantities. Define Pη(r) and its
instantaneous change dPη(r) as
Pη(r) =

Bu(r)
Bv(r)


, dPη(r) =


dBu(r)
dBv(r)


,

where Bu(r) = Bu(r) −
 r
0 B∗

v(s)
′dsΘ and dBu(r) = dBu(r) −

B∗
v(r)

′drΘ . As is shown in the Appendix, Pη(r) is the limit process
of the scaled partial sum process ofηt .

The fixed-b limits of Ω and ∆ are expressed in terms of func-
tionals whose forms depend on the smoothness of the kernel. We
distinguish two cases for the kernel (a third case, not examined
here, can be found in Hashimzade and Vogelsang (2008)). In the
first case the kernel function k(·), with k(0) = 1, is assumed to be
twice continuously differentiable with first and second derivatives
given by k′(·) and k′′(·). Furthermore k′

+
(0) denotes the derivative

evaluated at zero from the right. An example of kernels of this type
is given by the Quadratic Spectral kernel.

Let P1(r) and P2(r) denote two stochastic processes and define
the stochastic processes Qb(P1(r), P2(r)) and Q∆

b (P1(r), P2(r)) as

Qb(P1, P2) = −
1
b2

 1

0

 1

0
k′′


|r − s|

b


P1(s)P2(r)′dsdr

+
1
b

 1

0
k′


|1 − s|

b

 
P1(1)P2(s)′ + P1(s)P2(1)′


ds

+ P1(1)P2(1)′,

1 Similarly, the Bunzel (2006) fixed-b results do not capture the choices of lag and
lead lengths needed to implement DOLS.
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Q∆
b (P1, P2) = −

1
b2

 1

0

 1

r
k′′


|r − s|

b


P1(s)P2(r)′drds

+
1
b

 1

0
k′


|1 − s|

b


P1(s)P2(1)′ds

+
1
b
k′

+
(0)

 1

0
P1(s)P2(s)′ds + P1(1)P2(1)′

−

 1

0
dP1(s)P2(s)′.

The second case considered refers to the Bartlett kernel (i.e. k(x) =

1 − |x| for |x| ≤ 1 and 0 otherwise), in which case the stochastic
processes Qb(P1, P2) and Q∆

b (P1, P2) become

Qb(P1, P2) =
2
b

 1

0
P1(s)P2(s)′ds −

1
b

 1−b

0


P1(s)P2(s + b)′

+ P1(s + b)P2(s)′

ds −

1
b

 1

1−b


P1(1)P2(s)′

+ P1(s)P2(1)′

ds + P1(1)P2(1)′,

Q∆
b (P1, P2) =

1
b

 1

0
P1(s)P2(s)′ds −

1
b

 1−b

0
P1(s)P2(s + b)′ds

−
1
b

 1

1−b
P1(s)P2(1)′ds + P1(1)P2(1)′

−

 1

0
dP1(s)P2(s)′.

With all required quantities defined we can now state the fixed-b
limit results for Ω and ∆ which in turn lead to the fixed-b limit of
the FM-OLS estimator. In the formulation of the theorem we will
not distinguish the two discussed cases with respect to the kernel
function, but just use the brief notation Qb and Q∆

b . In addition, we
now useθ+

b to denoteθ+ to indicate the dependence ofθ+ on the
bandwidth. The dependence on the kernel remains implicit in the
notation.

Theorem 1. Assume that the data are generated by (1) and (2) and
that the FCLT (3) holds. Let M = bT , where b ∈ (0, 1] is held fixed as
T → ∞. Then as T → ∞Ω ⇒ Qb(Pη, Pη), ∆ ⇒ Q∆

b (Pη, Pη) − Λ′ (11)

and in particularΩvv ⇒ Qb(Bv, Bv), Ωvu ⇒ Qb(Bv,Bu),∆vv ⇒ Q∆
b (Bv, Bv) − Λ′

vv,
∆vu ⇒ Q∆

b (Bv,Bu) − Λ′

uv.

The fixed-b limit of the FM-OLS estimatorθ+

b is given by

A−1 θ+

b − θ


=

AX ′XA−1 

AX ′u+
− AM∗


⇒


B∗

v(r)B
∗

v(r)
′dr
−1

×


B∗

v(r)dB
b
uv(r) + B1 − B2


, (12)

with Bb
uv(r) = Bu(r) − Bv(r)′Qb(Bv, Bv)

−1Qb(Bv,Bu) and

B1 =


0

∆vu −

Q∆
b (Bv,Bu) − Λ′

uv

 ,

B2 =


0

∆vv −

Q∆
b (Bv, Bv) − Λ′

vv


Qb(Bv, Bv)

−1Qb(Bv,Bu)


.

Theorem 1 shows that under the fixed-b asymptotic approxi-
mation, the limit distribution of the FM-OLS estimator depends in
a complicated fashion upon nuisance parameters. These nuisance
parameters are, by construction, related to the two transforma-
tions upon which the FM-OLS estimator relies. The result clearly
shows that the zero mean mixed normal approximation for FM-
OLS will not be satisfactory if the sampling distributions of Ω and∆ are not close to Ω and ∆. Consider the orthogonalization step of
FM-OLS. The term


B∗

v(r)dB
b
uv(r) is close to a zero mean Gaussian

mixture only if in Bb
uv(r) = Bu(r) − Bv(r)′Qb(Bv, Bv)

−1Qb(Bv,Bu)

the Qb terms are close to the population quantities Ω−1
vv and Ωvu,

with this proximity depending upon kernel and bandwidth choice.
Similar observations hold for the second transformation, i.e. the re-
moval of ∆+∗

vu . The term B1 − B2 is close to zero when Q∆
b (Bv,Bu)

− Λ′
uv and Q∆

b (Bv, Bv) − Λ′
vv are close to ∆vu and ∆vv . If these ap-

proximations are not accurate, an additive bias is present.
The following corollary provides an alternative expression for

the fixed-b limit ofθ+

b that can be useful inmaking additional com-
parisons between Theorem 1 and the traditional limit distribution
given in (7).

Corollary 1. The fixed-b limit of θ+

b can be written as:

lim
T→∞

A−1 θ+

b − θ


=

 1

0
B∗

v(r)B
∗

v(r)
′dr
−1

×

 1

0
B∗

v(r)dBu·v(r) + F (Bu·v) − F

F(B∗

v)


,

with

Bu·v(r) = Bu·v(r) −

 r

0
B∗

v(s)ds
 1

0
B∗

v(s)B
∗

v(s)
′ds
−1

×

 1

0
B∗

v(s)dBu·v(s)

F

B∗

v(r)


=

 r

0
B∗

v(s)
′ds
 1

0
B∗

v(s)B
∗

v(s)
′ds
−1

×

 1

0
B∗

v(s)dBv(s)′Ω−1
vv Ωvu + ∆∗

vu


and the functional F (P) defined for some stochastic process P(r) as

F (P) = −

 1

0
B∗

v(r)dBv(r)′Qb(Bv, Bv)
−1Qb(Bv, P)

−


0

Q∆
b (Bv, P)


−


0

ΩvvQb(Bv, Bv)
−1Qb(Bv, P)


+


0

Q∆
b (Bv, Bv)Qb(Bv, Bv)

−1Qb(Bv, P)


.

The corollary provides several insights. First, the termF (F(B∗
v)),

being a function of Bv and the nuisance parameters Ωvv , Ωvu and
∆∗

vu, represents a conditional asymptotic bias in FM-OLS. Second,
one can show through a tedious calculation that F (Bu·v) is linear
in dBu·v(s)withweights that are functions of Bv(r) andΩvv . There-
fore, the fixed-b limit of FM-OLS ismixture normalwith a non-zero
mean and a conditional variance matrix that is much more com-
plex than VFM . Third, we can show that the fixed-b limit of FM-OLS
simplifies to (7) as b → 0 by showing that plimb→0F (Bu·v) = 0
and plimb→0F


F(B∗

v)


= 0. The following proposition gives the
formal result, and a sketch of the proof is given in the Appendix.

Proposition 1. As b → 0, the fixed-b limiting distribution of θ+

b con-
verges in probability to the traditional limit distribution (7).
These results show that the performance of FM-OLS relies critically
on the consistency approximation of the long run variance esti-
mators being accurate and that moving around the bandwidth and
kernel impacts the sampling behavior of the FM-OLS estimator. It
is reasonable to expect the accuracy of the traditional approxima-
tion given by (7) to often be inadequate in practice given the well
known bias and sampling variability problems of nonparametric
kernel long run variance estimators.
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3. The integrated modified OLS estimator

In this section we present a new estimator for which a simple
transformation is used to obtain an asymptotically unbiased es-
timator with a zero mean Gaussian mixture limiting distribution.
Like FM-OLS, the transformation has two steps but neither step re-
quires estimates of Ω or ∆+

vu and so the choice of bandwidth and
kernel is completely avoided. We consider a slightly more general
version of (1) given by

yt = f ′

t δ + x′

tβ + ut , (13)

where xt continues to follow (2) and where for the deterministic
components ft we merely assume that there is a p × p matrix τF
and a vector of functions, f (s), such that

T−1τ−1
F

[rT ]
t=1

ft →

 r

0
f (s)ds with

 1

0
f (s)f (s)′ds > 0. (14)

If e.g. ft = (1, t, t2, . . . , tp−1)′, then τF is a diagonal matrix with
diagonal elements 1, T , T 2, . . . , T p−1 and f (s) = (1, s, s2, . . . ,
sp−1)′.

Computing the partial sum of both sides of (13) gives

Syt = S f ′t δ + Sx′t β + Sut , (15)

where Syt =
t

j=1 yj and S ft , Sxt and Sut are defined analogously. In
vector notation, using similar notation as in the discussion of the
OLS estimator, we have

Sy = Sxθ + Su, (16)

with Sx stacking S ft and Sxt . With this notation the OLS estimator in
the partial sum regression is given byθ =


Sx′Sx−1 

Sx′Sy (17)

which leads toθ − θ =

Sx′Sx−1 

Sx′Su . (18)

The benefit of partial summing is that sub-matrices of the form

T
t=1

xtut (19)

that appear inθ andθ+ are replaced by sub-matrices of the form

T
t=1

Sxt S
u
t (20)

inθ . Appropriately scaled sums of the form of (19) have been well
studied in the econometrics literature, see Phillips (1988), Hansen
(1992), De Jong andDavidson (2000a,b) and the references therein,
and are the source of the additive nuisance parameters, ∆vu, that
show up in the limit of the OLS estimator. In contrast, scaled sums
of the form of (20) do not have such additive terms in their limits.
Partial summing before estimating the model thus performs the
same role for IM-OLS that M∗ plays for FM-OLS.

This still leaves the problem that correlation between ut and
vt (xt ) rules out the possibility of conditioning on Bv(r) to obtain
a conditional asymptotic normality result. The solution to this
problem is simple and only requires that xt be added as a regressor
to the partial sum regression (15):

Syt = S f ′t δ + Sx′t β + x′

tγ + Sut . (21)

Adding xt as regressors is related to DOLS. The simple endogeneity
correction by just including the original regressors xt in the par-
tial summed regression works because both xt and Sut are I(1) pro-
cesses, which implies that all correlation is soaked up in the long
run correlation matrix Ω−1
vv Ωvu and it is not necessary to include

any leads or lags aswould be the case e.g. in DOLS estimation of the
original regression (with I(1) regressors but I(0) errors). Therefore,
the ‘centering’ parameter forγ in case of endogeneity is Ω−1

vv Ωvu
and not the population value of γ = 0.

As shall be discussed in greater detail in Section 5, fixed-b infer-
ence regarding δ, β and γ using OLS estimators from (21) is com-
plicated by correlation betweenδ,β,γ , the OLS estimators from
(21), and the OLS residuals of (21) which we denote bySut = Syt − S f ′t δ − Sx′t β − x′

tγ . (22)
This correlation depends on unknown nuisance parameters and
the correlation remains even asymptotically. In order for HAC
based tests to be asymptotically pivotal under fixed-b asymptotics,
we need residuals that are asymptotically independent ofδ,β,γ .
This can be achieved by adjusting the residuals from (22) as fol-
lows. Define the vector of regressors zt as

zt = t
T

j=1

ξj −

t−1
j=1

j
s=1

ξs, ξt = [S f ′t , Sx′t , x′

t ]
′, (23)

and let z⊥
t denote the vector of residuals from individually regress-

ing each element of zt on the regressors S ft , Sxt , xt . The adjusted
residuals, denoted bySu∗t , are obtained as the OLS residuals from
the regression ofSut on z⊥

t . In other wordsSu∗t =Sut − z⊥′

t π, (24)

where π =

T
t=1 z

⊥
t z⊥′

t

−1T
t=1 z

⊥
t
Sut . We show that (upon

appropriate scaling)Su∗t is asymptotically independent ofδ,β,γ .
This asymptotic independence is sufficient to obtain asymptoti-
cally pivotal test statistics under fixed-b asymptotics. The adjust-
ment to the residuals used in (24) is similar in spirit to, although
mechanically different from, the adjustment used in constructingu+

t whereby yt is replaced byy+

t when computing residuals for (1)
using the FM-OLS estimators.

We now focus on the asymptotic behavior of the OLS estimators
of δ, β and γ from (21), which we label the IM-OLS estimators of
δ, β and γ . Redefine Sx so that it stacks S ft , Sxt , xt and redefineθ
so that it stacksδ,β,γ . With this economical use of notation, the
matrix form of (21) is still given by (16) and the OLS estimator is
still formally given by (17) and (18). Define the scaling matrix

AIM =

T−1/2τ−1
F 0 0

0 T−1Ik 0
0 0 Ik

 .

The following theorem gives the asymptotic distribution ofδ,β,γ .

Theorem 2. Assume that the data are generated by (1) and (2), that
the FCLT (3) holds and that the deterministic components satisfy (14).
Define θ by stacking the vectors δ, β and Ω−1

vv Ωvu. Then as T → ∞T 1/2τF (δ − δ)

T (β − β)

(γ − Ω−1
vv Ωvu)

 = A−1
IM

θ − θ


=

T−2AIMSx′SxAIM

−1 
T−2AIMSx′Su−

 0
0

Ω−1
vv Ωvu


⇒ σu·v


5


g(s)g(s)′ds5′

−1

5


g(s)wu·v(s)ds

= σu·v(5
′)−1


g(s)g(s)′ds

−1 
[G(1) − G(s)]dwu·v(s)

= Ψ , (25)
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where

5 =

Ip 0 0
0 Ω1/2

vv 0
0 0 Ω1/2

vv

 , g(r) =


 r

0
f (s)ds r

0
Wv(s)ds

Wv(r)

 ,

G(r) =

 r

0
g(s)ds.

Conditional on Wv(r), it holds that Ψ ∼ N(0, VIM), where VIM
is given by

VIM = σ 2
u·v(5

′)−1


g(s)g(s)′ds
−1

×


[G(1) − G(s)][G(1) − G(s)]′ds



×


g(s)g(s)′ds

−1

5−1. (26)

This conditional asymptotic variance differs from the conditional
asymptotic variance of the FM-OLS estimator of δ and β . Denoting
with m(s) = [f (s)′,Wv(s)′]′ and with ΠFM = diag(Ip, Ω

1/2
vv ) the

latter is given by, as already introduced in (8) for the special case
f (s) = 1 in Section 2:

VFM = σ 2
u·v


5′

FM

−1


m(s)m(s)′ds
−1

(5FM)−1 . (27)

An interesting question arises as to how the conditional variance
covariance matrices in (26) and (27) compare. We are unaware
of a theory of mixture of normals that would allow for an easy
comparison of the twounconditional variance covariancematrices.
However, we can make a comparison conditional on Bv(s), i.e. con-
ditional on xt .

Proposition 2. Conditional on Bv(s), it holds that VFM ≤ VIM for the
δ and β components.

The proof is given in the Appendix and is essentially a continuous
time version of the Gauss–Markov Theorem applied in the limiting
environment. While Proposition 1 suggests that IM-OLS is asymp-
totically less efficient than FM-OLS, one needs to keep in mind
that the traditional FM-OLS variance VFM ignores the impact of the
long run variance estimators on the sampling behavior of FM-OLS.
A more useful comparison from the perspective of practice is be-
tween VIM and the conditional variance implicit in the fixed-b anal-
ysis of FM-OLS in Corollary 1. This is true because these asymptotic
variances explicitly capture the impact of the transformations used
to remove the impact of endogeneity on the estimation of the re-
gression parameters. Given the complicated dependence on nui-
sance parameters, the kernel and bandwidth, and other features
of the model in the limit given by Corollary 1, such a compari-
son would be very tedious, and there is no reason to think that
a clean variance ranking would be obtained. However, we do ob-
tain a clean ranking of asymptotic bias. IM-OLS is asymptotically
unbiased whereas FM-OLS is asymptotically biased because of the
F

F(B∗

v)

term in Corollary 1.

Thus, fixed-b theory predicts that FM-OLS will exhibit more
bias in finite samples than IM-OLS whereas rankings of variance
and mean square error must be made on a case by case basis. We
make some finite sample comparisons between FM-OLS and IM-
OLS using a simulation study described in the next section and the
patterns we observe are generally consistent with the predictions
made by the fixed-b theory.
4. Finite sample bias and root mean squared error

In this section we compare the performance of the OLS, FM-
OLS, DOLS and IM-OLS estimators as measured by bias and root
mean squared error (RMSE)with a small simulation study. The data
generating process is given by
yt = µ + x1tβ1 + x2tβ2 + ut ,

xit = xi,t−1 + vit , xi0 = 0, i = 1, 2
where
ut = ρ1ut−1 + εt + ρ2(e1t + e2t), u0 = 0,
vit = eit + 0.5ei,t−1, i = 1, 2,
where εt , e1t and e2t are i.i.d. standard normal random variables in-
dependent of each other. The parameter values chosen are µ = 3,
β1 = β2 = 1, where we note that the value of µ has no effect on
the results because the estimators of β1 and β2 are exactly invari-
ant to the value of µ. The values for ρ1 and ρ2 are chosen from the
set {0.0, 0.3, 0.6, 0.9}. The parameter ρ1 controls serial correlation
in the regression error,whereas the parameterρ2 controlswhether
the regressors are endogenous or not. The kernels chosen for FM-
OLS are the Bartlett and the Quadratic Spectral kernels and the
bandwidths are reported for the gridM = bT with b ∈ {0.06, 0.10,
0.30, 0.50, 0.70, 0.90, 1.00}. We also use the data dependent
bandwidth chosen according to Andrews (1991). The DOLS esti-
mator is implemented using the information criterion based lead
and lag length choice as developed in Kejriwal and Perron (2008),
where we use the more flexible version discussed in Choi and
Kurozumi (2012) in which the numbers of leads and lags included
are not restricted to be equal. The considered sample sizes are
T = 100, 200 and the number of replications is 5000.

In Table 1we display for brevity only the results for T = 100 for
the Bartlett kernel because the results for the Quadratic Spectral
kernel and for T = 200 are qualitatively very similar. Panel A
reports bias and Panel B reports RMSE.

When there is no endogeneity (ρ2 = 0), none of the estimators
shows much bias for any value of ρ1. When the bandwidth is rela-
tively small, FM-OLS and OLS have similar RMSEs, as would be ex-
pected since they have the same asymptotic variancewhenρ2 = 0.
But, as the bandwidth increases, the RMSE of FM-OLS tends to first
increase and then decreases, indicating a hump-shape in the RMSE.
OLS and FM-OLS have smaller RMSE than IM-OLS and this holds
regardless of bandwidth for FM-OLS. This is not surprising because
IM-OLS uses a regression with an I(1) error, whereas OLS and FM-
OLS are based on a regressionwith an I(0) error, compare again also
Proposition 2 and thediscussion thereafter. Nevertheless, DOLShas
the largest RMSE.

When ρ2 ≠ 0, in which case there is endogeneity, some inter-
esting and different patterns emerge. As ρ2 increases, the bias of
OLS increases. FM-OLS is less biased than OLS, but FM-OLS does
show an increase in bias as ρ2 increases. This pattern of increas-
ing bias is especially pronounced when ρ1 is far away from zero.
The bias of FM-OLS also depends on the bandwidth and is seen to
initially fall as the bandwidth increases and then tends to increase
as the bandwidth becomes large. The bias of FM-OLS can exceed
the bias of OLS when very large bandwidths are used. In contrast
the biases of IM-OLS and DOLS are much less sensitive to ρ2 and
are always smaller than the biases of OLS or FM-OLS. The bias of
DOLS is similar to the bias of IM-OLS when ρ1 is small whereas for
larger values of ρ1, the bias of DOLS tends to be smaller than that of
IM-OLS. When ρ1 = 0.9, the biases of IM-OLS and DOLS are much
smaller than the biases of FM-OLS or OLS. The overall picture de-
picted by Panel A is that DOLS has smaller bias than IM-OLS which
in turn has lower bias than both OLS and FM-OLS. The magnitude
of the bias of both DOLS and IM-OLS is less sensitive to the values
of ρ1 and ρ2 than for OLS and FM-OLS.

Looking at Panel B we see that the RMSEs of DOLS and IM-OLS
tend to be larger than the RMSEs of OLS and FM-OLS, although
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Table 1
Finite sample bias and RMSE of the various estimators of β1, T = 100.

ρ1 ρ2 OLS IM-OLS DOLS FM-OLS, Bartlett kernel
M = 6 10 30 50 70 90 100 AND

Panel A: Bias

0.0 0.0 .0002 .0007 .0002 .0005 .0004 .0003 .0003 .0002 .0002 .0002 .0004
0.3 .0050 −.0001 −.0003 .0018 .0029 .0047 .0053 .0055 .0056 .0056 .0015
0.6 .0098 −.0008 −.0002 .0031 .0054 .0091 .0104 .0108 .0110 .0110 .0025
0.9 .0146 −.0015 −.0001 .0043 .0078 .0135 .0154 .0160 .0164 .0165 .0035

0.3 0.0 .0002 .0009 −.0014 .0007 .0006 .0004 .0004 .0003 .0003 .0003 .0006
0.3 .0107 .0012 −.0010 .0046 .0063 .0101 .0114 .0118 .0120 .0121 .0042
0.6 .0213 .0014 −.0010 .0085 .0120 .0198 .0224 .0233 .0238 .0239 .0079
0.9 .0318 .0016 −.0004 .0124 .0177 .0295 .0335 .0348 .0355 .0357 .0115

0.6 0.0 .0004 .0015 −.0059 .0010 .0010 .0006 .0006 .0005 .0004 .0004 .0010
0.3 .0239 .0063 −.0046 .0130 .0149 .0220 .0249 .0258 .0263 .0265 .0129
0.6 .0473 .0111 −.0036 .0250 .0287 .0435 .0492 .0512 .0522 .0526 .0248
0.9 .0708 .0160 −.0031 .0370 .0426 .0650 .0736 .0766 .0781 .0786 .0366

0.9 0.0 −.0001 .0022 −.0032 .0006 .0009 .0002 .0000 −.0006 −.0006 −.0005 .0006
0.3 .0801 .0560 .0371 .0678 .0664 .0723 .0791 .0817 .0836 .0843 .0682
0.6 .1603 .1098 .0769 .1349 .1319 .1443 .1581 .1640 .1678 .1691 .1359
0.9 .2405 .1637 .1189 .2021 .1973 .2163 .2371 .2464 .2519 .2539 .2035

Panel B: RMSE

0.0 0.0 .0265 .0375 .1301 .0287 .0290 .0299 .0304 .0306 .0302 .0301 .0286
0.3 .0286 .0376 .1350 .0292 .0299 .0314 .0320 .0324 .0320 .0319 .0289
0.6 .0345 .0378 .1371 .0308 .0327 .0357 .0368 .0375 .0371 .0369 .0303
0.9 .0426 .0379 .1388 .0334 .0369 .0420 .0437 .0447 .0442 .0439 .0325

0.3 0.0 .0365 .0532 .2022 .0403 .0407 .0414 .0419 .0422 .0416 .0414 .0401
0.3 .0408 .0532 .2040 .0414 .0426 .0446 .0455 .0462 .0456 .0454 .0410
0.6 .0520 .0533 .2076 .0447 .0480 .0536 .0556 .0566 .0561 .0558 .0439
0.9 .0668 .0534 .2097 .0498 .0559 .0662 .0694 .0708 .0703 .0700 .0483

0.6 0.0 .0589 .0903 .3535 .0671 .0678 .0673 .0678 .0682 .0671 .0667 .0666
0.3 .0688 .0906 .3552 .0704 .0724 .0750 .0766 .0775 .0766 .0762 .0697
0.6 .0930 .0916 .3579 .0799 .0851 .0957 .0996 .1012 .1004 .1001 .0787
0.9 .1233 .0934 .3595 .0937 .1029 .1230 .1294 .1318 .1311 .1307 .0919

0.9 0.0 .1547 .2661 .7758 .1822 .1889 .1847 .1835 .1816 .1774 .1758 .1800
0.3 .1864 .2780 .7823 .2039 .2102 .2100 .2123 .2117 .2077 .2063 .2019
0.6 .2607 .3121 .7983 .2595 .2656 .2757 .2843 .2855 .2820 .2806 .2579
0.9 .3515 .3622 .8228 .3324 .3387 .3604 .3754 .3782 .3749 .3736 .3311
when ρ1 and ρ2 are large, IM-OLS can have slightly smaller RMSE
than FM-OLSwhen a large bandwidth is used. In all cases, DOLS has
the highest RMSE. For a given value of ρ1, the RMSE of OLS notice-
ably increases as ρ2 increases. When ρ1 is small, the RMSE of FM-
OLS is not very sensitive to ρ2 unless the bandwidth is large. The
RMSE of IM-OLS does not varywithρ2 whenρ1 is small.When ρ1 is
large, the RMSE of FM-OLS increases with ρ2. The RMSE of IM-OLS
shows a similar pattern, but the RMSE of IM-OLS is less sensitive
to the value of ρ2. DOLS has a much larger RMSE than all other es-
timators when ρ1 = 0.9. Focusing on the bandwidth we see that
the RMSE of FM-OLS is sensitive to the bandwidth as was the case
with bias. As the bandwidth increases, the RMSE of FM-OLS tends
to increase.

The simulations show that IM-OLS is more effective in reducing
bias than FM-OLS and both bias and RMSE of IM-OLS are less
sensitive to the nuisance parameters ρ1 and ρ2 than are the bias
and RMSE of FM-OLS. DOLS has less bias than IM-OLS but a higher
RMSE. The superior bias properties of IM-OLS and DOLS come at
the cost of higher RMSE, unless ρ1 and ρ2 are both large in which
case IM-OLS has RMSE similar to OLS and FM-OLS. With respect
to the FM-OLS estimator, the simulations reflect the predictions
of Theorem 1 and the following Corollary 1 and Proposition 1,
showing that the performance of the FM-OLS estimator is sensitive
to the bandwidth choice (due to its impact on the approximation
accuracy of the long run variance estimators).

5. Inference using IM-OLS

This section is devoted to a discussion of hypothesis testing us-
ing the IM-OLS estimator. The basis for doing so is the zero mean
Gaussian mixture limiting distribution of the IM-OLS estimator
given in Theorem 1 and the expression for the conditional asymp-
totic variance matrix given by (26). In particular we considerWald
tests for testing multiple linear hypotheses of the form
H0 : Rθ = r,
where R ∈ Rq×(p+2k) with full rank q and r ∈ Rq. Because the vec-
torθ has elements that converge at different rates, obtaining for-
mal results for the Wald statistics requires a condition on R that is
unnecessary when all estimated coefficients converge at the same
rate. As is well known in the literature, for a given constraint (a
given row of R), the estimator with the slowest rate of convergence
dominates the asymptotic distribution of the linear combination
implied by the constraint. See, for example, the discussion in Sec-
tion 4 of Sims et al. (1990).When there are two ormore restrictions
being tested, it is not necessarily the case that the slowest con-
verging estimator dominates a given restriction. Should another
restriction involve that slowest converging estimator, it is usually
possible that the restrictions can be rotated so that (i) the slow-
est rate estimator only appears in one restriction and (ii) theWald
statistic has the exact same value. Because of this possibility, we
do not state conditions on R related to the rates of convergence of
the estimators involved in the constraints. Rather, we state a suffi-
cient condition for R under which theWald statistics have limiting
chi-square distributions. We assume that there exists a nonsingu-
lar q × q scaling matrix AR such that

lim
T→∞

A−1
R RAIM = R∗, (28)

where R∗ has rank q. Note that AR typically has elements that are
positive powers of T and that it need not be diagonal.
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The expression (26) immediately suggests estimators, V̌IM , for
VIM of the form

V̌IM = σ̌ 2
u·vA

−1
IM


Sx′Sx−1 

C ′C
 

Sx′Sx−1
A−1
IM

= σ̌ 2
u·v


T−2AIMSx′SxAIM

−1
(T−4AIMC ′CAIM)

×

T−2AIMSx′SxAIM

−1
,

where σ̌ 2
u·v is an estimator of σ 2

u·v and C = [c1, . . . , cT ]′ with ct =

SS
x
T − SS

x
t−1 and SS

x
t =

t
j=1 S

x
j .

There are several obvious candidates for σ̌ 2
u·v . The first is to useσ 2

u·v as given in (6), whose consistency properties have been stud-
ied e.g. in Phillips (1995), see also Jansson (2002). The second ob-
vious idea is to use, ∆Sut , the first differences of the OLS residuals
of the IM-OLS regression (21), to directly estimate σ 2

u·v:

σ 2
u·v = T−1

T
i=2

T
j=2

k


|i − j|
M


∆Sui ∆Suj .

It turns out (see Theorem 3) that σ 2
u·v is not consistent under tra-

ditional assumptions on the bandwidth and kernel as discussed
e.g. in Jansson (2002). However, under traditional bandwidth as-
sumptions, the limit ofσ 2

u·v is shown in Theorem 3 to be larger than
σ 2
u·v , which implies that test statistics usingσ 2

u·v are asymptotically
conservative when standard normal or chi-square critical values
are used.

Given an estimator of σ 2
u·v , we can define aWald statistic as

W̌ = (Rθ − r)′[RAIM V̌IMAIMR′
]
−1(Rθ − r),

where V̌IM is either VIM using σ 2
u·v , which defines W , or VIM usingσ 2

u·v , which defines W . The asymptotic null distribution of these
test statistics is given in Theorem 3.

Clearly, appealing to a consistency result forσ 2
u·v justifies stan-

dard inference procedures. As discussed earlier, referring to consis-
tency properties of long run variance estimators, however, ignores
the impact of bandwidth and kernel choices. In order to capture the
effects of these choices fixed-b asymptotic theory needs to be de-
veloped. Given the form of the test statistics, and in particular the
form ofVIM andVIM , what is required is that the estimator of σ 2

u·v
has a fixed-b limit that is proportional to σ 2

u·v (in order for the long
run variance to be scaled out in the test statistics), independent
ofθ , and does not depend upon additional nuisance parameters.
In the case where a long run variance estimator has such proper-
ties, the resultingWald statistics have pivotal asymptotic distribu-
tions that only depend upon the kernel and bandwidth (as well as
the number of integrated regressors and the deterministic compo-
nents) and can thus be tabulated.

It follows from Theorem 1 that the fixed-b limit ofσ 2
u·v does not

fulfill the stated requirements, because it is not proportional to σ 2
u·v

and it also depends upon nuisance parameters in a rather compli-
cated fashion (see again the result for the fixed-b limit of Ω in The-
orem1). As follows from the results of Lemma2, the fixed-b limit ofσ 2
u·v is proportional to σ 2

u·v and does not otherwise depend on nui-
sance parameters. However, the limit is correlated with the limit
of θ , with this correlation itself being a complicated function of
unknown nuisance parameters. Thus, under fixed-b asymptotics,
Wald statistics usingθ andσ 2

u·v orσ 2
u·v do not have asymptotically

pivotal distributions. This presents a new hurdle in cointegrating
regressions for fixed-b inference that does not arise in stationary
regression settings, because the usual OLS residuals cannot directly
be used to form the basis for fixed-b inference.

One solution is to use the adjusted residuals,Su∗t , already de-
fined in (24) in Section 3 to construct an estimator ofσ 2

u·v defined as

σ 2∗
u·v = T−1

T
i=2

T
j=2

k


|i − j|
M


∆Su∗i ∆Su∗j .
As we show, this estimator has the required properties to deliver
a pivotal fixed-b limit for Wald statistics. This leads to a third esti-
mator of VIM given byV ∗

IM = σ 2∗
u·vA

−1
IM


Sx′Sx−1

(C ′C)

Sx′Sx−1

A−1
IM .

When usingσ 2∗
u·v andwhere thus V̌IM is given byV ∗

IM , we denote the
Wald statistic by W ∗.

The following lemma characterizes the asymptotic behavior of
the partial sum processes of ∆Sut and ∆Su∗t which is needed to
subsequently obtain the fixed-b limits of theWald statistics.

Lemma 2. LetSut andSu∗t denote residuals as given in (22) and (24).
The asymptotic behavior of the corresponding partial sum processes is
given by

T−1/2
[rT ]
t=2

∆Sut ⇒

σu·v

 r

0
dwu·v(s) − g(r)′

 1

0
g(s)g(s)′ds

−1

×

 1

0
(G(1) − G(s)) dwu·v(s)


= σu·vP(r), (29)

T−1/2
[rT ]
t=2

∆Su∗t ⇒

σu·v

 r

0
dwu·v(s) − h(r)′

 1

0
h(s)h(s)′ds

−1

×

 1

0
(H(1) − H(s)) dwu·v(s)


= σu·vP∗(r), (30)

where

h(r)′ =


g(r)′,

 r

0
(G(1) − G(s))′ ds


, H(r) =

 r

0
h(s)ds.

Furthermore, conditional upon Wv(r) it holds that Ψ , the scaled and
centered limit of θ , is correlated with P(r) but uncorrelated withP∗(r).

The correlation between P(r) and Ψ implies that the fixed-b
limit of σ 2

u·v is correlated with Ψ and this correlation depends on
nuisance parameters through Π . The important result of Lemma 2
is, however, that the random processP∗(r), defined in (30), is con-
ditional uponWv(r) uncorrelated with Ψ . Given that both quanti-
ties are conditionally Gaussian implies that they are independent
of each other. Therefore the fixed-b limit ofσ 2∗

u·v is independent of
Ψ and pivotal fixed-b inference can be performed.

The asymptotic behavior of the three Wald statistics under
the null hypothesis is given by Theorem 3. Standard asymptotic
results based on traditional bandwidth and kernel assumptions (as
detailed in Jansson, 2002) are given for W and W whereas a fixed-b
result is given for W ∗.2

Theorem 3. Assume that the data are generated by (1) and (2), that
the FCLT (3) holds, that the deterministic components satisfy (14) and
that R satisfies (28). Suppose that the bandwidth, M, and kernel, k(·),
satisfy conditions such that σ 2

u·v is consistent. Then as T → ∞W ⇒ χ2
q ,

2 Note for completeness thatwe have alsoworked out the fixed-b limits of W andW . Since these limits are not pivotal, they cannot be used to generate critical values.
For this reason we do not report the expressions for these fixed-b limits here.



750 T.J. Vogelsang, M. Wagner / Journal of Econometrics 178 (2014) 741–760
where χ2
q is a chi-square random variable with q degrees of freedom.

When q = 1,t ⇒ Z,

wheret is the t-statistic version of W and Z is distributed standard
normal.

Consider the same assumptions concerning the bandwidth and ker-
nel as before, then as T → ∞σ 2
u·v ⇒ σ 2

u·v(1 + d′

γ dγ ),

with dγ denoting the last k components of


g(s)g(s)′ds
−1 

[G(1)
− G(s)]dwu·v . Consequently, it follows that

W ⇒
χ2
q

1 + d′
γ dγ

,

where χ2
q is a chi-square random variable with q degrees of freedom

that is correlated with dγ . When q = 1,

t ⇒
Z

1 + d′
γ dγ

,

wheret is the t-statistic version of W; Z is distributed standard nor-
mal and is correlated with dγ .

If M = bT , where b ∈ (0, 1] is held fixed as T → ∞, then as
T → ∞

W ∗
⇒

χ2
q

Qb(P∗,P∗)
,

where χ2
q is a chi-square random variable with q degrees freedom in-

dependent of Qb(P∗,P∗). When q = 1,

t∗ =
Rθ − r

RAIMV ∗

IMAIMR′

⇒
Z

Qb(P∗,P∗)
,

where Z is distributed standard normal independent of Qb(P∗,P∗).

When appealing to consistency of σ 2
u·v , inference using W is

standard. In contrast σ 2
u·v is inconsistent under traditional band-

width assumptions. But because d′
γ dγ > 0,σ 2

u·v is upwardly biased
and the critical values of W are smaller than those of the χ2

q distri-
bution. Therefore, using χ2

q critical values for W leads to a conser-
vative test under traditional bandwidth assumptions. The fixed-b
limiting distribution of W ∗ is similar to what is obtained for Wald
statistics in stationary regression settings except that the form of
Qb(P∗,P∗) is more complicated in the cointegration case. In addi-
tion to dependence upon ft , a feature that occurs also in station-
ary regressions, the process Qb(P∗,P∗) depends also upon Wv(r),
i.e. upon the number of integrated regressors included in the coin-
tegrating regression.3 Thus, critical values need to be simulated
taking into account the specifications of the deterministic compo-
nents, the number of integrated regressors, the kernel function and
the bandwidth choice. In Table 4 we tabulate critical values for the
t-statistic for the parameter associated with xt in a model with an
intercept and one xt regressor only. We provide critical values for
the Bartlett and QS kernels and a grid of bandwidths indexed by b.
In a supplementary Appendixwe provide critical values for a selec-
tion of kernels and bandwidths for models with up to 4 integrated
regressors and deterministic components consisting of intercept
only and intercept plus linear trend.

3 A similar finding was made by Bunzel (2006) for fixed-b inference using DOLS
and by Jin et al. (2006) for partial fixed-b inference using FM-OLS.
6. Finite sample performance of test statistics

In this section we provide some finite sample results concern-
ing the tests’ performance using the simulation design from Sec-
tion 4. Throughout this section we only report results for cases
where ρ1 = ρ2. We report results for t-statistics for testing the
null hypothesis H0 : β1 = 1 and Wald statistics for testing the
joint null hypothesis H0 : β1 = 1, β2 = 1. The OLS statistics were
implemented without taking into account serial correlation in the
regression error and serve as a benchmark. The FM-OLS statistics
were implemented using σ 2

u+ . The IM-OLS statistics were imple-
mented in three ways: The first usesσ 2

u·v and is labeled IM(O), the
second uses σ 2

u·v and is labeled IM(D) and the third uses σ 2∗
u·v and

is labeled IM(Fb). We report results for both the Bartlett and the
Quadratic Spectral (QS) kernels. With respect to bandwidth choice
the FM and IM statistics are implemented in two ways. The first
way uses the data dependent bandwidth rule of Andrews (1991).
The second way uses a specific bandwidth, M , over the grid M =

1, 2, . . . , T . This grid is indexed by the bandwidth to sample size
ratio, b = M/T . As in Section 4, again DOLS is included with the
leads and lags chosen as described and the bandwidth for the long
run variance estimation is chosen according to Andrews (1991).
Rejections for the OLS, IM(O) and IM(D) statistics are carried out
using N(0, 1) critical values for all values of M . Given the results
of Theorem 3 this implies that the test statistic IM(D) is asymptoti-
cally conservative under traditional asymptotic theory. In contrast,
rejections for DOLS, FM(Fb) and IM(Fb) are carried out using fixed-
b asymptotic critical values. For each value of b, i.e. given M/T ,
asymptotic critical valueswere simulated for theDOLS, FM(Fb) and
IM(Fb) statistics using the limiting random variables given by Bun-
zel (2006) (DOLS), Jin et al. (2006) (FM(Fb)) and our Theorem 3
(IM(Fb)). The critical values for DOLS, FM(Fb) and IM(Fb) depend
on both kernel and bandwidth. The empirical rejection probabili-
ties were computed using 5000 replications, and the nominal level
is 0.05 in all cases.

Tables 2 and 3 report empirical null rejection probabilities using
data dependent bandwidth choices for the Bartlett and the QS ker-
nel. Table 2 contains the results for the t-tests and Table 3 contains
the results for the Wald tests. In both tables Panel A corresponds
to T = 100 and Panel B to T = 200. We only briefly summarize
somemain findings related to both tables. When ρ1, ρ2 = 0, as ex-
pectedOLS testsworkwell with rejections close to 0.05 and, as also
expected, increasing the values of ρ1, ρ2 leads to very large over-
rejections. For ρ1, ρ2 = 0 the IM(Fb) test has rejections that tend
to be below 0.05 whilst the other tests show some over-rejections.
DOLS tests exhibit substantial over-rejectionswhen T = 100, even
in the case of no serial correlation and no endogeneity. For T = 200
the over-rejection problems of DOLS are substantially less severe.
The IM(O) and IM(D) tests also show some over-rejections, which
are however less severe than for FM(Fb). IM(D) usually has slightly
lower rejection rates than IM(O) and this is as expected, given
the conservative nature of the IM(D) test under standard asymp-
totics. With increasing values of ρ1, ρ2, all tests’ over-rejection
problems becomemore pronounced. Overall, the test least affected
by the over-rejection problem, when using the Andrews (1991)
data dependent bandwidth, is the IM(Fb) test, which only suffers
from large over-rejections (sometimes larger than IM(O), IM(D)
and FM(Fb)) when ρ1, ρ2 = 0.9.

Some of these over-rejection problems in the ρ1, ρ2 = 0.9
case can be attributed to the bandwidths chosen by the Andrews
method. For example, for IM(Fb) the average values of b across the
replications are .0648 (T = 100) and .0515 (T = 200) for the
Bartlett kernel. The corresponding average values of b forσ 2

u+ used
by FM(Fb) are .0796 and .0473. The average b values for the QS
kernel are slightly smaller in all cases. These are relatively small
bandwidths and it is well known in the fixed-b literature that
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Table 2
Empirical null rejection probabilities, 0.05 level, t-tests for h0 : β1 = 1 data dependent bandwidths and lag lengths.

ρ1, ρ2 OLS Bartlett kernel QS kernel
DOLS FM IM(O) IM(D) IM(Fb) DOLS FM IM(O) IM(D) IM(Fb)

Panel A: T = 100

0.0 .0544 .2408 .0708 .0802 .0736 .0570 .2298 .0904 .0926 .0856 .0450
0.3 .1608 .3432 .0960 .1038 .1004 .0652 .3488 .0986 .1020 .0986 .0836
0.6 .4126 .5196 .1774 .1444 .1518 .1198 .5030 .1544 .1284 .1378 .0556
0.9 .7700 .6816 .5142 .4412 .4256 .5480 .6624 .4464 .4194 .4082 .3936

Panel B: T = 200

0.0 .0484 .0604 .0700 .0722 .0628 .0392 .0600 .0720 .0766 .0672 .0324
0.3 .1592 .1094 .0880 .0892 .0812 .0776 .0970 .0808 .0816 .0736 .0582
0.6 .4204 .1856 .1554 .1092 .1070 .0920 .1508 .1320 .0964 .0920 .0552
0.9 .7712 .3178 .4752 .3212 .2942 .4280 .2530 .4536 .3066 .2780 .4564
Table 3
Empirical null rejection probabilities, 0.05 level,Wald tests for H0 : β1 = 1, β2 = 1 data dependent bandwidths and lag lengths.

ρ1, ρ2 OLS Bartlett kernel QS kernel
DOLS FM IM(O) IM(D) IM(Fb) DOLS FM IM(O) IM(D) IM(Fb)

Panel A: T = 100

0.0 .0578 .3144 .0708 .0972 .0890 .0612 .3028 .0980 .1172 .1074 .0426
0.3 .2158 .4566 .1144 .1330 .1258 .0692 .4650 .1126 .1300 .1256 .1024
0.6 .5772 .7052 .2284 .1970 .2070 .1538 .6816 .1888 .1702 .1900 .0568
0.9 .9372 .8812 .7048 .6378 .6114 .7498 .8680 .6076 .6080 .5856 .5418

Panel B: T = 200

0.0 .0512 .0654 .0776 .0748 .0666 .0356 .0598 .0782 .0808 .0724 .0248
0.3 .2028 .1320 .1030 .1004 .0920 .0846 .1116 .0944 .0906 .0832 .0608
0.6 .5752 .2324 .1834 .1324 .1314 .1074 .1892 .1556 .1130 .1140 .0540
0.9 .9432 .4472 .6492 .4524 .4140 .5950 .3482 .6206 .4330 .3920 .6276
small bandwidths lead to larger over-rejection problems than big-
ger bandwidths when serial correlation is strong.

In order to illustrate the role that the bandwidth and kernel
choices play in the over-rejection problemwe plot in Figs. 1–5 null
rejection probabilities of the t-tests as a function of b ∈ (0, 1].
The first two figures show the results for the Bartlett kernel for
T = 100 for increasing values of ρ1, ρ2. In Fig. 1, with ρ1, ρ2 = 0.3,
for small bandwidths all tests have rejection probabilities close
to 0.09 so there are some minor over-rejection problems. As the
bandwidth increases, with the exception of FM(Fb) and IM(Fb), all
rejection probabilities increase substantially. FM(Fb) shows some
over-rejection problems that are initially increasing in b but then
decline as b increases further. Rejections for IM(Fb) are close to
9% for all values of b indicating that the fixed-b approximation
performs reasonably well for IM(Fb). In the working paper, Vogel-
sang and Wagner (2013b), rejections for IM(fb) are close to 5% for
all values of b when there is no serial correlation or endogeneity
(ρ1, ρ2 = 0.0).

As the values of ρ1, ρ2 increase to 0.9, we see in Fig. 2 that
the rejections take a J-curve shape for IM(O) and IM(D) and over-
rejection becomes a serious problem regardless of bandwidth for
these tests with IM(O) having larger over-rejection problems than
IM(D). The IM(Fb) test is now severely affected by over-rejections.
Interestingly, in this case FM(Fb) has less of an over-rejection prob-
lem than IM(Fb) although all four tests are severely size distorted.
If we increase T , the over-rejection problems of IM(Fb) become less
problematic. Fig. 3 shows results for T = 500whereas Fig. 4 shows
results for T = 1000. Increasing T to 500 substantially reduces
the over-rejections of IM(Fb) with rejections close to 12%–13% for
non-small bandwidths. FM(Fb) continues to have substantial over-
rejection problems. We see in Fig. 4 that increasing T further to
1000 yields rejections for IM(Fb) that are approximately 6%–7%.
Again, FM(Fb) continues to exhibit nontrivial over-rejection prob-
lems. Figs. 3 and 4 clearly show that when serial correlation and
endogeneity are strong, a larger sample size is needed for IM(Fb) to
b

Fig. 1. Empirical null rejections, t-test, T = 100, ρ1 = ρ2 = 0.3, Bartlett kernel.

have reasonable size whereas the other statistics continue to have
over-rejection problems.

Fig. 5 provides some results for the QS kernel. For the sake of
brevity we only report results for ρ1, ρ2 = 0.9 and for T = 1000.
The working paper provides additional results for the QS kernel.
Similar to the Bartlett kernel case, we see in Fig. 5 that IM(Fb) tends
to have rejections close to 5% whereas FM(Fb) can over-reject.
Not surprisingly, IM(O) and IM(D) show substantial over-rejection
problems. If we compare Fig. 5 to 4, we see that IM(Fb) has less
over-rejection problems when using the QS kernel compared to
the Bartlett kernel. Clearly, the QS kernel leads to less size distorted
tests than the Bartlett kernel.

The overall picture is that the IM(Fb) test is the most robust
statistic in terms of over-rejection problems although for a given
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Table 4
Fixed-b asymptotic critical values for t-test of β in regression with intercept and one regressor.

Panel A: Bartlett kernel

b 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

95% 1.6932 1.8255 1.9707 2.1396 2.3210 2.5175 2.7227 2.9298 3.1351 3.3396
97.5% 2.0285 2.2063 2.3979 2.6170 2.8474 3.0972 3.3545 3.6098 3.8663 4.1107
99% 2.4460 2.6685 2.9201 3.1932 3.4966 3.8131 4.1413 4.4832 4.8197 5.1422
99.5% 2.7455 2.9923 3.2870 3.6355 3.9600 4.3330 4.7332 5.1388 5.4687 5.8420

b 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

95% 3.5348 3.7171 3.8848 4.0360 4.1949 4.3322 4.4521 4.5517 4.6500 4.7492
97.5% 4.3616 4.5772 4.7941 4.9891 5.1695 5.3217 5.4714 5.6035 5.7264 5.8454
99% 5.4265 5.6797 5.9238 6.1835 6.4076 6.6029 6.7954 6.9543 7.1223 7.2694
99.5% 6.1353 6.4441 6.7049 6.9934 7.3124 7.5098 7.6841 7.9199 8.0373 8.1602

b 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

95% 4.8455 4.9227 4.9890 5.0645 5.1309 5.2114 5.2894 5.3637 5.4394 5.5033
97.5% 5.9590 6.0499 6.1588 6.2430 6.3396 6.4336 6.5389 6.6441 6.7322 6.8134
99% 7.3677 7.5084 7.5941 7.7294 7.8500 8.0009 8.1297 8.2313 8.3557 8.5135
99.5% 8.3116 8.4798 8.6175 8.7959 8.9384 9.1105 9.2329 9.4176 9.5586 9.7002

b 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80

95% 5.5858 5.6636 5.7333 5.7873 5.8568 5.9161 5.9785 6.0525 6.1182 6.1826
97.5% 6.8984 7.0026 7.0860 7.1694 7.2608 7.3434 7.4407 7.5176 7.5911 7.6673
99% 8.6067 8.6957 8.8061 8.8890 9.0184 9.1032 9.2298 9.3602 9.4847 9.5579
99.5% 9.7874 9.9185 10.0433 10.2004 10.3577 10.4819 10.5370 10.6463 10.7998 10.8832

b 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

95% 6.2477 6.3023 6.3524 6.4244 6.4760 6.5296 6.5847 6.6304 6.6853 6.7365
97.5% 7.7403 7.8267 7.8905 7.9613 8.0327 8.0984 8.1740 8.2414 8.3106 8.3767
99% 9.6555 9.7774 9.8532 9.9286 10.0028 10.1165 10.2018 10.2871 10.3599 10.4436
99.5% 10.9947 11.1332 11.2467 11.3489 11.4627 11.5894 11.6811 11.7972 11.9234 12.0290

Panel B: Quadratic spectral kernel

b 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

95% 1.7338 1.9209 2.1699 2.4856 2.8936 3.4082 4.0151 4.8014 5.7308 6.8305
97.5% 2.0886 2.3448 2.6656 3.0945 3.6345 4.3537 5.2460 6.3794 7.7178 9.2666
99% 2.5234 2.8663 3.3071 3.8767 4.6549 5.7091 7.0310 8.6937 10.7070 13.1511
99.5% 2.8407 3.2338 3.8202 4.5328 5.5177 6.8401 8.4881 10.8076 13.4736 16.4481

b 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

95% 8.0140 9.2449 10.5013 11.7472 12.9608 14.0871 15.0642 16.0279 16.8018 17.5136
97.5% 11.0222 12.8987 14.7963 16.8181 18.7732 20.7165 22.4850 24.0161 25.5221 26.8964
99% 15.8087 18.8405 21.8897 25.3523 28.6677 31.5962 34.5779 37.4654 40.2910 43.0964
99.5% 19.9960 24.0370 28.0318 32.5506 36.7802 42.0681 46.7491 50.7974 55.0350 59.9235

b 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

95% 18.1475 18.7095 19.2702 19.7309 20.1433 20.5939 20.9625 21.3219 21.6411 21.9317
97.5% 28.1398 29.2209 30.1876 31.0764 31.9833 32.7286 33.3458 34.0529 34.6470 35.2694
99% 45.7145 47.7651 50.4107 52.2371 53.9473 55.5799 57.1530 58.7989 60.3068 61.2087
99.5% 63.5465 67.1811 70.8659 74.7957 77.7241 80.2765 82.1976 84.2852 86.3021 88.9058

b 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80

95% 22.1648 22.4990 22.7303 22.9469 23.1772 23.4815 23.7279 23.9809 24.1831 24.4107
97.5% 35.8575 36.3833 36.7923 37.3439 37.7349 38.3346 38.8993 39.3871 39.9879 40.3649
99% 62.7834 63.5792 64.7326 65.6511 66.8285 68.1831 68.6392 69.7165 70.7337 72.4124
99.5% 91.1713 92.8712 95.3349 97.2121 98.6277 100.872 103.718 105.910 107.660 109.374

b 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

95% 24.6562 24.9178 25.1008 25.3928 25.5731 25.8380 26.0156 26.2197 26.3767 26.5555
97.5% 41.0117 41.5149 42.0449 42.7282 43.3055 43.7696 44.3047 44.7995 45.2353 45.7322
99% 73.8060 74.9712 76.3487 77.8025 78.8081 80.1633 81.2284 82.3518 83.6382 84.7245
99.5% 111.604 112.292 114.338 115.999 117.609 120.408 122.528 124.114 126.265 127.964

Note: Left tail critical values follow by symmetry around zero.
sample size, increasing the values of ρ1, ρ2 causes over-rejections
to emerge. Larger bandwidths in conjunction with the QS kernel
lead to test statistics with the least over-rejection problems. Sim-
ilar over-rejection patterns have been observed by Kiefer and Vo-
gelsang (2005) in stationary regression settings.

We now turn to the analysis of the power properties of the
tests. For the sake of brevity we only display results for the case
ρ1, ρ2 = 0.6 for the Wald test for T = 100 and using the QS ker-
nel. Patterns are similar for other values of ρ1, ρ2, for the t-tests,
for T = 200 and for the Bartlett kernel. Starting from the null
values of β1 and β2 equal to 1, we consider under the alternative
β1 = β2 = β ∈ (1, 2], using (including the null value) a total of 21
values on a grid withmesh 0.05.We focus on size-corrected power
because of the potential over-rejection problemsunder the null hy-
pothesis. This allows us to see power differences across tests while
holding null rejection probabilities constant at 0.05. Clearly, this is
useful for theoretical power comparisons, but it has to be kept in
mind that such size-corrections are not feasible in practice.

In Fig. 6 we depict the power of the FM(Fb) and IM Wald tests
using the QS kernel with b = 0.3. Patterns are qualitatively similar
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b

Fig. 2. Empirical null rejections, t-test, T = 100, ρ1 = ρ2 = 0.9, Bartlett kernel.

b

Fig. 3. Empirical null rejections, t-test, T = 500, ρ1 = ρ2 = 0.9, Bartlett kernel.

b

Fig. 4. Empirical null rejections, t-test, T = 1000, ρ1 = ρ2 = 0.9, Bartlett kernel.

for other values of b. The first thing to note is that size-corrected
power of the FM(Fb) and IM(O) are similar. This suggests that par-
tial summing before estimation (whenusing the IM-OLS estimator)
b

Fig. 5. Empirical null rejections, t-test, T = 1000, ρ1 = ρ2 = 0.9, QS kernel.

β

Fig. 6. Size adjusted power,Wald test, T = 100, ρ1 = ρ2 = 0.6, QS kernel, b = 0.3.

implies onlyminimal power losses. The second thing to note is that
IM(Fb) has the least power across the four tests. The use ofσ 2∗

u·v to
obtain asymptotically fixed-b inference and less finite sample size
distortions comes at the price of a small but nontrivial reduction in
power.

Fig. 7 shows the impact of the bandwidth on the power of
the IM(Fb) test by displaying the power curves for eight values of
b = 0.02, 0.06, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0. It is obvious that power
depends on the bandwidth and tends to decrease when the band-
width is increased, and power is highly sensitive to the bandwidth.
In contrast, results reported in the working paper for the Bartlett
kernel show power with the Bartlett kernel is much less sensitive
to b although power does decrease as b increases. Similar patterns
in power were found in stationary regression setting by Kiefer and
Vogelsang (2005). That power decreases quickly with b for the QS
kernel needs to be seen in conjunction with the observation made
earlier that tests using the QS kernel suffer much less from over-
rejection problems than those using the Bartlett kernel especially
when large bandwidths are used. Thus, the price of robustness to
over-rejections is lower power, or alternatively, higher power can
be obtained at the cost of greater size distortions. A similar size-
power trade-off with respect to kernel and bandwidth choice has
been found in Kiefer and Vogelsang (2005) for stationary regres-
sions and it is this trade-off that forms the basis of the data depen-
dent bandwidth rule developed by Sun et al. (2008).
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β

Fig. 7. Size adjusted power,Wald test, T = 100, ρ1 = ρ2 = 0.6, QS kernel.

β

Fig. 8. Size adjusted power,Wald test, T = 100, ρ1 = ρ2 = 0.6, QS kernel.

Finally, Fig. 8 allows for power comparisons across the various
tests (OLS, FM-OLS, DOLS, IM-OLS). In Fig. 8 power of the IM(Fb)
test is shown for b = 0.06, 0.1, 1.0 and using the Andrews data
dependent bandwidth. FM(Fb) is implemented using the Andrews
bandwidth formula. The OLS and FM(Fb) tests have the highest
size-corrected power, with the power of the IM(Fb) tests with b =

0.06, 0.1 being slightly lower and the power of the DOLS test being
substantially lower. Power of the IM(Fb) test with b = 1 is lower
than even the power of the DOLS test.

7. Summary and conclusions

The paper begins by deriving the fixed-b limit distribution
of the FM-OLS estimator of Phillips and Hansen (1990). Fixed-b
asymptotic theory has been developed in Kiefer and Vogelsang
(2005) to capture the impact of bandwidth and kernel choices on
tests in stationary HAC regressions, whose effects are not captured
by standard asymptotic theory. Clearly, such choices in long run
variance estimation are necessary when implementing the FM-
OLS estimator. The fixed-b asymptotic distribution of the FM-OLS
estimator features complicateddependencies uponbandwidth and
kernel choices and is not asymptotically unbiased. The fixed-b
limiting distribution shows that the accuracy of long run variance
estimation is crucial for the properties of the FM-OLS estimator.
We also show that the fixed-b limit distribution converges to the
traditional limit distribution of the FM-OLS estimatorwhen b → 0.

The derivation of the fixed-b limit distribution of the FM-OLS
estimator presents some hurdles for fixed-b theory. The first hur-
dle is that fixed-b theory has to be extended from the stationary
regression framework to the world of unit roots and cointegration,
an endeavor undertaken to a certain extent also in Bunzel (2006)
and Jin et al. (2006). In cointegrating regressions fixed-b limits of
long run variance estimators depend not only upon the determin-
istic components, but also upon the number of integrated regres-
sors. The secondhurdle is the need to derive the fixed-b limit of half
long run variancematrix estimatorswhich turn out to have compli-
cated forms including additive nuisance parameters. This results in
a fixed-b limit distribution of the FM-OLS estimator of very com-
plicated form that does not lend itself to the construction of test
statistics that are asymptotically free of nuisance parameters. Our
fixed-b result for the FM-OLS estimator shows that the various long
run and half long run variance estimators used to construct the FM-
OLS estimator need to be close to their population values for FM-
OLS to work in practice.

Consequently, we propose a new simple tuning parameter free
estimator that is based on a partial sum transformed regression
augmented by the original integrated regressors themselves, re-
ferred to as IM-OLS estimator. The advantage of the partial sum
transformation is that it results in a zeromeanmixedGaussian lim-
iting distributionwithout the need to choose any tuning parameter
(like bandwidth, kernel or numbers of leads and lags). When the
IM-OLS estimates are to be used for inference, a long run variance
still needs to be estimated. Pivotal inference can be done in two
ways. In a straightforward way one can use a consistent estima-
tor of the required long run variance and this leads to tests having
standard asymptotic distributions. Alternatively, fixed-b inference
is possible for the IM-OLS estimator. The construction of fixed-b
test statistics requires to further orthogonalize the IM-OLS resid-
uals with respect to a set of specifically constructed additional re-
gressors. These furthermodified residuals form thebasis for pivotal
fixed-b inference. Hence, critical values for the resultant fixed-b, t
andWald statistics can be tabulated. Similar to what Bunzel (2006)
found for DOLS tests, these critical values depend upon the deter-
ministic components included, the number of integrated regres-
sors and, of course, the bandwidth as well as the kernel chosen.

The theoretical analysis is complemented by a simulation study,
in which the performance of the new estimator and test statistics
based upon it is comparedwithOLS, FM-OLS andDOLS. The IM-OLS
estimator shows goodperformance in termsof both bias andRMSE.
Typically, the bias of IM-OLS is smaller than the bias of FM-OLS and
its RMSE is typically a bit larger than the RMSE of FM-OLS. The size
and power analysis of the tests shows that the fixed-b approach is
very useful also in the context of cointegrating regressions. It leads
to test statistics that are more robust, in terms of having lower size
distortions than all other test statistics, at the expense of only very
minor power losses provided serial correlation and/or endogeneity
is not too strong. When serial correlation and/or endogeneity is
strong, the tests based on all estimators examined have severe null
over-rejection problems although IM-OLS with the QS kernel and
a large bandwidth has the least over-rejection problems in this
case. Thus, in case of strong serial correlation or endogeneity the
QS kernel is preferred over the Bartlett kernel.

Future research will study IM-OLS type estimators for panels of
cointegrated time series, for higher order cointegrating regressions
and for nonlinear cointegration relationships (that are linear in
parameters). Furthermore, we will investigate whether and how
the estimatorγ can serve as a basis for endogeneity testing.
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Appendix. Proofs

Proof of Theorem 1. In line with the formulation in the main text
we consider here the case with the intercept as the only determin-
istic component in the regression. Define the partial sum processSt =

t
j=1ηj. We start by establishing functional central limit the-

orems for T−1/2S[rT ] and T−1T
t=2
St−1η′

t . Consider first

T−1/2
[rT ]
t=1

ut = T−1/2
[rT ]
t=1

ut −
[rT ]

T
T 1/2 (µ − µ)

− T−3/2
[rT ]
t=1

x′

tT (β − β)

⇒

 r

0
dBu(s) − r

 r

0
B∗

v(s)
′dsΘ.

Using the definition ofηt = [ut , v
′
t ]

′ and stacking now leads to

T−1/2S[rT ] = T−1/2
[rT ]
t=1

ηt ⇒

 r

0
dBu(s) −

 r

0
B∗

v(s)
′dsΘ

Bv(r)


=


Bu(r)
Bv(r)


−

 r

0
B∗

v(s)
′dsΘ

0

 = Pη(r).
We define correspondingly

dPη(r) =


dBu(r)
dBv(r)


−


B∗

v(r)
′Θ

0


dr.

Remark 1. For the IM-OLS estimator we consider more general
deterministic components so it is useful for the sake of clarity to
point out the obvious changes this implies forut and its limit pro-
cesses. In this more general case if we let Θ denote the limit of
the OLS estimator in the cointegrating regression (13), i.e. the re-
gression including ft as deterministic components, then in the def-
initions of Pη(r) and dPη(r) we would redefine B∗

v(r)
′ as B∗

v(r)
′
=

f (r)′ Bv(r)′

.

Let us now return to the specific case considered for the OLS
estimator, i.e. the intercept only case. Consider T−1T

t=2
St−1η′

t ,
using

ηt =

ut
vt


=


ut
vt


−


(µ − µ) + x′

t(
β − β)

0


= ηt − λt
and thus for the partial sumsSt = Sη
t − Sλ

t . By assumption it holds
that T−1/2Sη

[rT ]
⇒ B(r) = Ω1/2W (r) and using the results for the

limits of the OLS estimators we have

T−1/2Sλ
[rT ]

⇒

 r

0
B∗

v(s)
′dsΘ

0

 .

Now consider

T−1
T

t=2

St−1η′

t = T−1
T

t=2


Sη

t−1 − Sλ
t−1


(ηt − λt)

′

= T−1
T

t=2

Sη

t−1η
′

t − T−1
T

t=2

Sη

t−1λ
′

t

− T−1
T

t=2

Sλ
t−1η

′

t + T−1
T

t=2

Sλ
t−1λ

′

t . (31)

We consider each of the four terms in (31) in turn. Under the stated
assumption (3) it holds that

T−1
T

t=2

Sη

t−1η
′

t ⇒


B(r)dB(r) + Λ.

For the second term in (31) we get

T−1
T

t=2

Sη

t−1λ
′

t = T−1
T

t=2

Sη

t−1


(µ − µ) + x′

t(
β − β), 0


=


T−1

T
t=2

T−1/2Sη

t−1T
1/2 (µ − µ)

+ T−1
T

t=2

T−1/2Sη

t−1T
−1/2x′

tT (β − β), 0



⇒


B(r)B∗

v(r)
′drΘ, 0


. (32)

The third term in (31) can be rewritten as

T−1
T

t=2

Sλ
t−1η

′

t = T−1
T−1
t=2


Sλ
t−1 − Sλ

t


Sη′

t

+ T−1Sλ
T−1S

η′

T − T−1λ1η
′

1

= T−1Sλ
T−1S

η′

T − T−1
T−1
t=2

λtS
η′

t − T−1λ1η
′

1. (33)

For the first term in (33) it holds that

T−1Sλ
T−1S

η′

T ⇒


B∗

v(r)
′drΘ

0


B(1)′,

for the second term in (33) it can be shown that it has up to transpo-
sition the same limit as given in (32) and the third term converges
to 0. Combining this we get

T−1
T

t=2

Sλ
t−1η

′

t ⇒


B∗

v(r)
′drΘ

0


B(1)′ −


Θ ′


B∗

v(r)B(r)
′dr

0


.

It remains to consider the fourth term in (31)

T−1
T

t=2

Sλ
t−1λ

′

t

= T−1
T

t=2


(t − 1) (µ − µ) + Sx′t−1(

β − β)

0

 
(µ − µ) + x′

t (
β − β)

0

′
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=

T−1
T

t=2


(t − 1) (µ − µ) + Sx′t−1(

β − β)
 

(µ − µ) + (β − β)′xt


0

0 0


⇒

  r

0
B∗

v(s)
′dsΘΘ ′B∗

v(r)dr 0

0 0

 .

Combining the above results leads by appropriate rearranging of
the terms to

T−1
T

t=2

St−1η′

t ⇒


Pη(r)dPη(r)′ + Λ.

We now turn to ∆ itself, using the shorthand notation kij =

k


|i−j|
M


, suppressing the dependence uponM , given by

∆ = T−1
T

i=1

T
j=i

kijηiη′

j = Ω − T−1
T

i=2

i−1
j=1

kijηiη′

j .

UsingSj =
j

s=1ηs, routine algebraic manipulations (see Vogel-
sang and Wagner (2013b)) give

∆ = Ω − T−1
T−1
i=2

i−2
j=1


kij − ki,j+1


−

ki+1,j − ki+1,j+1

SiS ′

j

+ T−1
T−1
i=2


ki−1,i+1 − ki+1,i

SiS ′

i−1

− T−1
T−2
j=1


kTj − kT ,j+1

STS ′

j − T−1
T

i=2

ki−1,iηiS ′

i−1

= Ω − T−1
T−1
i=2

i−2
j=1


kij − ki,j+1


−

ki+1,j − ki+1,j+1

SiS ′

j

+


k


2
M


− k


1
M


T−1

T−1
i=2

SiS ′

i−1

− T−1
T−2
j=1


kTj − kT ,j+1

STS ′

j − k


1
M


T−1

T
i=2

ηiS ′

i−1, (34)

making the dependence uponM explicit again for several terms in
the last line.

As is common in fixed-b asymptotic theory, compare
Hashimzade and Vogelsang (2008), the limits depend upon the
properties of the kernel function used. We first derive the result
for twice differentiable kernels with k(0) = 1 and afterwards de-
rive the result for the Bartlett kernel. The results followbyusing the
above derived limits and the asymptotic properties (under fixed-
b limits, i.e. M = bT ) of the kernel functions as developed in a
univariate setting in Hashimzade and Vogelsang (2008). The result
that Ω ⇒ Qb


Pη, Pη follows directly from algebraic expressions

given by Hashimzade and Vogelsang (2008), extended in obvious
ways to our multivariate setting, that allow to write Ω as a contin-
uous function of T−1/2S[rT ] and the kernel. Also note that we use, as
in the text, the same shorthand notationQb (P1, P2) andQ∆

b (P1, P2)
for both types of kernels.

For twice continuously differentiable kernels with k(0) = 1 we
thus obtain from (34)

∆ ⇒ Qb

Pη(r), Pη(r)+

1
b2

  r

0
k′′


|r − s|

b


Pη(r)Pη(s)′dsdr

+
1
b
k′

+
(0)


Pη(s)Pη(s)′ds

−
1
b


k′


1 − s
b


Pη(1)Pη(s)′ds −


dPη(s)Pη(s)′ − Λ′
= −
1
b2

  1

r
k′′


|r − s|

b


Pη(r)Pη(s)′dsdr

+
1
b


k′


1 − s
b


Pη(s)Pη(1)′ds

+
1
b
k′

+
(0)


Pη(s)Pη(s)′ds + Pη(1)Pη(1)′

−


dPη(s)Pη(s)′ − Λ′

= Q∆
b


Pη, Pη− Λ′. (35)

For the Bartlett kernel we obtain similarly as above

∆ ⇒ Qb

Pη(r), Pη(r)+

1
b

 1−b

0
Pη(s + b)Pη(s)′ds

−
1
b


Pη(s)Pη(s)′ds

+

 1

1−b
Pη(1)Pη(s)′ds −


dPη(s)Pη(s)′ − Λ′

=
1
b


Pη(s)Pη(s)′ds −

1
b

 1−b

0
Pη(s)Pη(s + b)′ds

−
1
b

 1

1−b
Pη(s)Pη(1)′ds + Pη(1)Pη(1)′

−


dPη(s)Pη(s)′ − Λ′

= Q∆
b


Pη, Pη− Λ′. (36)

The results in (35) and (36) establish (11). The remaining claims
of the theorem follow by simply inserting the corresponding sub-
matrices of the fixed-b limits of Ω and∆ in the expressions for the
FM-OLS estimator. In particular it holds that under fixed-b asymp-
totics

AX ′u+

⇒




dBu(r) −


dBv(r)′Qb(Bv, Bv)

−1Qb(Bv,Bu)
BvdBu(r) + ∆vu −


BvdBv(r)′ + ∆vv


Qb(Bv, Bv)

−1Qb(Bv,Bu) − Q+

b

 ,

with Q+

b = Q∆
b (Bv,Bu) − Λ′

uv −

Q∆
b (Bv, Bv) − Λ′

vv


Qb(Bv, Bv)

−1

Qb(Bv,Bu) denoting the fixed-b limit of∆+
vu. The result then follows

by rearranging terms and using the definition of Bb
uv(r).

Proof of Corollary 1. We start by observing that in Bb
uv(r) = Bu(r)

−Bv(r)Qb(Bv, Bv)
−1Qb(Bv,Bu),B1 andB2 the termsQb(Bv,Bu) and

Q∆
b (Bv,Bu) appear. Thus, consider

Bu(r) = Bu(r) −

 r

0
B∗

v(s)
′dsΘ

= Bu(r) −

 r

0
B∗

v(s)
′ds
 1

0
B∗

v(s)B
∗

v(s)
′ds
−1

×

 1

0
B∗

v(s)dBu(s) + ∆∗

vu


= Bu(r) −

 r

0
B∗

v(s)
′ds
 1

0
B∗

v(s)B
∗

v(s)
′ds
−1

×

 1

0
B∗

v(s)dBu·v(s) +

 1

0
B∗

v(s)dBv(s)′Ω−1
vv Ωvu + ∆∗

vu


.

Upon regrouping terms we obtainBu(r) =Bu·v(r) + Bv(r)′Ω−1
vv Ωvu − F


B∗

v(r)

,

with

Bu·v(r) = Bu·v(r) −

 r

0
B∗

v(s)ds
 1

0
B∗

v(s)B
∗

v(s)
′ds
−1

×

 1

0
B∗

v(s)dBu·v(s),
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F

B∗

v(r)


=

 r

0
B∗

v(s)
′ds
 1

0
B∗

v(s)B
∗

v(s)
′ds
−1

×

 1

0
B∗

v(s)dBv(s)′Ω−1
vv Ωvu + ∆∗

vu


,

as given already in the formulation of the corollary. This immedi-
ately leads to

Qb(Bv,Bu) = Qb

Bv,Bu·v − F(B∗

v) + B′

vΩ
−1
vv Ωvu


= Qb(Bv,Bu·v) − Qb


Bv, F(B∗

v)

+ Qb(Bv, Bv)Ω

−1
vv Ωvu,

and the same decomposition for Q∆
b (Bv,Bu). Given these decom-

positions we can write
 1
0 B∗

v(r)dB
b
uv(r), B1 and B2 in terms of 1

0
B∗

v(r)dB
b
uv(r) =

 1

0
B∗

v(r)dBu·v(r)

−

 1

0
B∗

v(r)dBv(r)′Qb(Bv, Bv)
−1Qb(Bv,Bu·v)

+

 1

0
B∗

v(r)dBv(r)′Qb(Bv, Bv)
−1Qb(Bv, F(B∗

v)),

B1 =


0

∆vu −

Q∆
b (Bv,Bu) − Λ′

vu


=


0

Ωvu


−


0

Q∆
b (Bv,Bu·v)


+


0

Q∆
b


Bv, F(B∗

v)
−


0

Q∆
b (Bv, Bv)Ω

−1
vv Ωvu


,

B2 =


0

Ωvv − Q∆
b (Bv, Bv)


Qb(Bv, Bv)

−1Qb(Bv,Bu)


=


0

ΩvvQb(Bv, Bv)
−1Qb(Bv,Bu·v)


−


0

ΩvvQb(Bv, Bv)
−1Qb


Bv, F(B∗

v)
+


0

Ωvu


−


0

Q∆
b (Bv, Bv)Qb(Bv, Bv)

−1Qb(Bv,Bu·v)


+


0

Q∆
b (Bv, Bv)Qb(Bv, Bv)

−1Qb

Bv, F(B∗

v)


−


0

Q∆
b (Bv, Bv)Ω

−1
vv Ωvu


.

The result now follows by regrouping of terms into the term
B∗

v(r)dBu·v(r), the terms involvingBu·v(r) and the terms involv-
ing F(B∗

v(r)), the latter two compressed by using the operatorF (·)

as defined in the formulation of the corollary.

Proof of Proposition 1. We sketch the result for the Bartlett ker-
nel only. Calculations are similar, but more cumbersome, for the
other kernels considered in the paper. Using Corollary 1, the propo-
sition is established by showing that

plim
b→0

F (Bu·v) = plim
b→0

F

F(B∗

v)


= 0.

Given the forms of F (Bu·v) and F

F(B∗

v)

it is sufficient to show

that

plim
b→0

Qb


Bv,

 r

0
B∗

v(s)ds


= 0,

plim
b→0

Q∆
b


Bv,

 r

0
B∗

v(s)ds


= 0,

plim
b→0

Qb(Bv,Bu·v) = 0, plim
b→0

Q∆
b (Bv,Bu·v) = 0.
Note that establishing the results for Qb(Bv,Bu·v) and Q∆
b (Bv,Bu·v)

require showing that

plim
b→0

Qb


Bv,

 r

0
B∗

v(s)ds


= 0,

plim
b→0

Q∆
b


Bv,

 r

0
B∗

v(s)ds


= 0,

plim
b→0

Qb(Bv, Bu·v) = 0, plim
b→0

Q∆
b (Bv, Bu·v) = 0,

and so these four limits are what need to be shown. Showing that
plimb→0Qb(Bv, Bu·v) = 0 is trivial. It is well known in the fixed-
b literature that as b → 0, fixed-b limiting random variables
converge to the long run variance being estimated. The long run
covariance between Bv and Bu·v is zero given that Bv and Bu·v are in-
dependent and so it follows that plimb→0Qb(Bv, Bu·v) = 0. The re-
sult for Q∆

b (Bv, Bu·v) follows naturally. For the other two limits it is
sufficient to show that the mean and variance of the given quanti-
ties converge to zero as b → 0. Explicit computations establishing
the zero limits for themeans are given in theworking paper Vogel-
sang and Wagner (2013b) and computations for the variances are
similar but more tedious.

Proof of Theorem 2. We consider the asymptotic behavior of the
OLS estimatorθ =

δ′,β ′,γ ′
′

in Eq. (21) and define θ =

δ′, β ′,

Ω ′
vuΩ

−1
vv

′. It follows directly that

A−1
IM

θ − θ


=

T−2AIMSx′SxAIM

−1 
T−2AIMSx′Su

− (0, 0, Ω ′

vuΩ
−1
vv )′ (37)

using the notation of themain text.We consider the first two terms
on the right hand side of (37) separately and start with the first
one. In order to establish the limit for T → ∞ we first consider
T−1/2AIMSx

[rT ]
,

T−1τ−1
F

[rT ]
t=1

ft

T−3/2
[rT ]
t=1

xt

T−1/2x[rT ]

 ⇒


 r

0
f (s)ds

Ω1/2
vv

 r

0
Wv(s)ds

Ω1/2
vv Wv(r)

 = 5g(r).

This immediately implies that


T−2AIMSx′SxAIM

−1
⇒ (5′)−1


g(s)g(s)′ds

−1

5−1. (38)

Analogously, for a typical entry of the second term in (37) it holds
that

T−1/2AIMSx
[rT ]

T−1/2Su
[rT ]

⇒ 5g(r)Bu(r)

and hence

T−2AIMSx′Su ⇒ 5


g(r)Bu(r)dr

= σu·v5


g(r)wu·vdr + 5


g(r)Wv(r)′drλ′

uv,

using Bu(r) = σu·vwu·v(r) + λuvWv(r).
Next note thatWv(r) is the last block-component in g(r), there-

fore
5′
−1


g(r)g(r)′dr

−1 
g(r)Wv(r)′drλ′

uv

=

5′
−1

0
0
Ik


λ′

uv =

 0
0

(Ω1/2
vv )′

−1
λ′

uv

 . (39)
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From the definition of the respective quantities it follows that the
non-zero block at the end of (39) is equal to Ω−1

vv Ωvu. Upon can-
celing Ω−1

vv Ωvu this establishes the asymptotic behavior of the OLS
estimatorθ . The representation given in (25) then follows using
integration by parts and the definition of G(r).

Proof of Proposition 2. A detailed proof of the proposition is
given in the working paper, Vogelsang and Wagner (2013b). The
proof is essentially a proof of the Gauss–Markov theorem in con-
tinuous time.

Proof of Lemma 2. We next provide a proof of Lemma 2. To es-
tablish the result for T−1/2[rT ]

t=2 ∆Su∗t it is convenient to note that
using standard projection arguments it follows that the adjusted
residuals,Su∗t , given by (24) are exactly the same as the OLS resid-
uals from the regression

Syt = S f ′t δ + Sx′t β + x′

tγ + z ′

tκ + Sut . (40)

The following lemma establishes the limit distribution of the OLS
estimators from (40) which is needed to obtain the limit of T−1/2

[rT ]

t=2 ∆Su∗t .

Lemma 1. Consider regression (40) and denote byθ∗
=
δ∗′,β∗′,γ ∗′,κ∗′

′ the vector of OLS estimators. Define the vector θ∗
=

δ′,

β ′, Ω ′
vuΩ

−1
vv , 0

′. It holds that
A−1
M

θ∗
− θ∗


⇒ σu·v


5′

M

−1


h(s)h(s)′ds
−1

×


h(r)wu·v(r)dr

= σu·v

5′

M

−1


h(s)h(s)′ds
−1

×


[H(1) − H(s)] dwu·v(s),

where AM = diag(AIM , T−2AIM), 5M = diag(5, 5),

h(r) =

 g(r) r

0
[G(1) − G(s)]ds

 , H(r) =

 r

0
h(s)ds.

Proof. The proof builds on the results already obtained in Theo-
rem 1 and essentially only the asymptotic behavior of the addi-
tional regressors and their cross-products with the error process
has to be established. Recall that zt is defined by (23) and partition
zt as zt = (z f ′t , zS

x
′

t , zx′t )′. The limit, when appropriately scaled with
T−5/2AIM , is given by

T−3τ−1
F z f

[rT ]
= T−3τ−1

F [rT ]

T
t=1

S ft − T−3τ−1
F

[rT ]
t=1

t
j=1

S fj

=
[rT ]

T
T−1

T
t=1

T−1τ−1
F S ft

− T−1
[rT ]
t=1

T−1
t

j=1

T−1τ−1
F S fj

→ r
  s

0
f (m)dm


ds

−

 r

0

 s

0

 n

0
f (m)dm


dn

ds,
T−7/2zS
x

[rT ]
= T−7/2

[rT ]

T
t=1

Sxt − T−7/2
[rT ]
t=1

t
j=1

Sxj

=
[rT ]

T
T−1

T
t=1

T−3/2Sxt − T−1
[rT ]
t=1

T−1
t

j=1

T−3/2Sxj

⇒ rΩ1/2
vv

  s

0
Wv(m)dm


ds

− Ω1/2
vv

 r

0

 s

0

 n

0
Wv(m)dm


dn

ds,

T−5/2zx
[rT ]

= T−5/2
[rT ]

T
t=1

xt − T−5/2
[rT ]
t=1

t
j=1

xj

=
[rT ]

T
T−1

T
t=1

T−1/2xt − T−1
[rT ]
t=1

T−1
t

j=1

T−1/2xj

⇒ rΩ1/2
vv


Wv(r)dr

− Ω1/2
vv

 r

0

 s

0
Wv(m)dm


ds.

Combined, this can be written as

T−5/2AIMz[rt] ⇒ 5


r


g(s)ds −

 r

0

 s

0
g(m)dm


ds


= 5


rG(1) −

 r

0
G(s)ds


= 5

 r

0
[G(1) − G(s)]ds


.

For the cross-product of regressors and errors it holds that

T−5/2AIMz[rT ]T−1/2Su
[rT ]

⇒ 5

 r

0
[G(1) − G(s)]ds


Bu(r).

These preliminary results, combined with the results from Theo-
rem 1 imply that

A−1
M

θ∗
− θ∗


⇒


5′

M

−1


h(s)h(s)′ds
−1

×


h(s)Bu(s)ds


−

 0
0

Ω−1
vv Ωvu
0


= σu·v


5′

M

−1


h(s)h(s)′ds
−1

×


h(s)wu·v(s)ds


= σu·v


5′

M

−1


h(s)h(s)′ds
−1

×


[H(1) − H(s)]dwu·v(s)


,

where the second line follows from the same argument as in The-
orem 1 and the third line follows via integration by parts and the
definition of H(r). This completes the proof of Lemma 1.

We are now ready to prove Lemma2. Consider theOLS residuals
from (21),Sut = Syt − Sx′t θ = Sut − x′

tΩ
−1
vv Ωvu − Sx′t θ − θ


and their first differences,
∆Sut = ut − ∆x′

tΩ
−1
vv Ωvu −x′

t

θ − θ

.
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Consequently,

T−1/2
[rT ]
t=2

∆Sut = T−1/2
[rT ]
t=2

ut − T−1/2x′

[rT ]
Ω−1

vv Ωvu

−T−1/2
[rT ]
t=2

x′

tAIMA−1
IM

θ − θ


⇒ σu·vwu·v(r) − g(r)′5′


σu·v


5′
−1


g(s)g(s)′ds

−1

×


[G(1) − G(s)]dwu·v(s)



= σu·v

 r

0
dwu·v(s) − g(r)′


g(s)g(s)′ds

−1

×


[G(1) − G(s)]dwu·v(s)


= σu·vP(r),

where the limit follows from results already discussed in the
proof of Theorem 2. In this respect note that T−1/2[rT ]

t=2x′
tAIM =

T−1/2Sx′
[rT ]

AIM −T−1/2x′

1AIM , with the last term vanishing asymptot-
ically.

Now consider the residuals from regression (40) which are, as
discussed, exactly identical to the adjusted residuals given by (24),Su∗t = Syt − Sx′t θ∗

= Sut − x′

tΩ
−1
vv Ωvu − Sx′t θ∗

− θ∗

,

where here Sxt =


S f ′t , Sx′t , x′

t , z
′
t

′

andθ∗ and θ∗ are as given in

Lemma 1. The remaining steps are exactly the same as for ∆Sut
before, i.e. we get

T−1/2
[rT ]
t=2

∆Su∗t = T−1/2
[rT ]
t=2

ut − ∆x′

[rT ]
Ω−1

vv Ωvu

× − T−1/2
[rT ]
t=2

x′

tAMA−1
M

θ∗
− θ∗


⇒ σu·v

 r

0
dwu·v(s) − h(r)′


h(s)h(s)′ds

−1

×


[H(1) − H(s)]dwu·v(s)


= σu·vP∗(r),

with h(r) and H(r) as defined in the formulation of the lemma.
To finish the proof of the lemma it remains to establish (con-

ditional) independence ofP∗(r) and the limiting distribution ofθ .
Conditional uponWv(r) the two quantities are Gaussian processes
defined in terms of the Gaussian process wu·v(r). Since they are
conditionally Gaussian, conditional independence is established by
showing that they are conditionally uncorrelated. With respect toθ the relevant quantity is given by


[G(1) − G(s)]dwu·v(s), since

the other components in the limiting distribution are non-random
conditional uponWv(r). By definition of the quantities it holds that

Cov
P∗(r),


[G(1) − G(s)]dwu·v(s)


=

 r

0
[G(1) − G(s)]′ds − h(r)′


h(s)h(s)′

−1

×


[H(1) − H(s)][G(1) − G(s)]′ds. (41)

The first term is equal to (the transpose of) the second block of
h(r), h2(r) say, and the proof is completed by showing that also
the second term in (41) is equal to h2(r)′.
Using once again integration by parts it follows that
[H(1) − H(s)][G(1) − G(s)]′ds =


h(s)h2(s)′ds.

This in turn implies that the product of the two integrals is equal
to

0
I


, which finally shows that the second term in (41) is indeed

equal to h2(r)′. Exactly analogous calculations as above in (41)
show that correlation is present betweenP(r) and the limit dis-
tribution ofθ .
Proof of Theorem 3. Use as in themain text as shorthandnotation
for the two Wald statistics considered W̌ , with W̌ ∈ {W , W }. The
test statistics only differ with respect to the used estimator of the
long run variance parameter,σ 2

u·v orσ 2
u·v . As in the proof of Theo-

rem 2,θ denotes the vector of OLS estimators
δ′,β ′,γ ′

′
and θ is

the vector

δ′, β ′, Ω ′

vuΩ
−1
vv

′.
Before we turn to the test statistics themselves we consider the

covariance matrices. Up to the different estimators of the scalar
quantity σ 2

u·v both estimators of the covariancematrix are given by
T−2AIMSx′SxAIM

−1 
T−4AIMC ′CAIM

 
T−2AIMSx′SxAIM

−1
, (42)

with C defined in the main text. For the outer terms the limit has
already been established in the proof of Theorem 2 in Eq. (38)
and thus it only remains to consider the expression in the middle.
Straightforward calculations show that T−3/2AIMc[rT ] ⇒ G(1) −

G(r) and this implies that the central expression converges to
[G(1) − G(s)][G(1) − G(s)]′ds. Consequently, the expression (42)

converges, up to the scalar σ 2
u·v , to VIM as given in (26).

Under the null hypothesis both of the two defined statistics can
be – as is usual in a linear regression model – written as (with V̌IM
as given in the main text):

W̌ = (Rθ − r)′

RAIM V̌IMAIMR′

−1
(Rθ − r)

=

R(θ − θ)

′ 
RAIM V̌IMAIMR′

−1 
R(θ − θ)


=

A−1
R RAIMA−1

IM (θ − θ)
′ 

A−1
R RAIM V̌IMAIMR′


A−1
R

′−1

×

A−1
R RAIMA−1

IM (θ − θ)

.

Now, by assumption the restrictionmatrix fulfills limT→∞ A−1
R RAIM

= R∗, and A−1
IM (θ −θ) ⇒ Φ(VIM) under the null hypothesis. There-

fore, in case of consistent estimation of the conditional long run
variance σ 2

u·v usingVIM it follows thatW ⇒

R∗Φ(VIM)

′ R∗VIMR∗′
−1 R∗Φ(VIM)


∼ χ2

q .

We now consider the asymptotic behavior of the test statisticW usingσ 2
u·v . It follows from the definition ofSut that

∆Sut = u+

t − v′

t(γ − γ ) − f ′

t (
δ − δ) − v′

t(
β − β),

with γ = Ω−1
vv Ωvu and u+

t = ut − v′
tγ . As discussed in Jansson

(2002), the terms f ′
t (
δ − δ) and v′

t(
β − β) can be neglected for

long run variance estimation. Thus, the long run variance estima-
tor based on ∆Sut ,σ 2

u·v , asymptotically coincides with the long run
variance estimator of u+

t − v′
t(γ − γ ). Define η+′

t = [u+

t , v′
t ] and

its long run variance

Ω+
=


σ 2
u·v 0
0 Ωvv


.

An infeasible long run variance estimator, Ω+, using the unob-
served η+

t is under the assumptions of Jansson (2002) consistent,
i.e. Ω+

p
→ Ω+.
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Next note that

u+

t − v′

t(γ − γ ) = η+′

t


1

−(γ − γ )


,

which implies that the HAC estimator, Ω say, for u+

t − v′
t(γ − γ )

can be written as

[1 − (γ − γ )′]Ω+


1

−(γ − γ )


.

From Theorem 2 we know thatγ − γ ⇒ [0k×p 0k×k Ik]σu.v(5
′)−1

×


g(s)g(s)′ds

−1 
[G(1) − G(s)]dwu·v

= σu.v(Ω
−1/2
vv )′dγ ,

with dγ as defined in the main text. This implies that

Ω = [1 − (γ − γ )′]Ω+


1

−(γ − γ )


⇒ [1 − σu·vd′

γ Ω−1/2
vv ]


σ 2
u·v 0
0 Ωvv

 
1

−σu.v(Ω
−1/2
vv )′dγ


= σ 2

u·v(1 + d′

γ dγ ).

Thus, we have shown that σ 2
u·v ⇒ σ 2

u·v(1 + d′
γ dγ ), which in turn

implies the result for W as given in the formulation of the theorem
using otherwise the same arguments as for W .

The result for the fixed-b test statistic W ∗ is slightly different
because the fixed-b limit of the covariance matrix is such thatV ∗

⇒ Qb(P∗,P∗)VIM . This implies thatW ∗
⇒


R∗Φ(VIM)

′ Qb(P∗,P∗)R∗VIMR∗′
−1 

R∗Φ(VIM)


∼
χ2
q

Qb(P∗,P∗)
, (43)

with numerator and denominator independent of each other. In
Lemma 2 it has been shown that Ψ andP∗(r) are independent of
each other conditional upon Wv(r). Furthermore, the numerator
of (43) – being a chi-square distribution – is independent ofWv(r),
which implies that the numerator and denominator are also inde-
pendent of each other unconditionally. This in turn allows for the
simulation of fixed-b critical values.
The stated results for the t-tests follow, obviously, as special
cases of theWald test results.
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