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When can the environmental profile and emissions reduction

be optimised independently of the pollutant level?

Nils Chr. Framstad*y

Department of Economics, University of Oslo, Box 1095 Blindern, NO-0317 Oslo, Norway

(Received 15 July 2013; accepted 14 October 2013)

Consider a model for optimal timing of a policy measure which changes the emission
rate, e.g. trading off the cost of reduction against the time-additive aggregate of
environmental damage, the disutility from the pollutant stock MðtÞ the infrastructure
contributes to. Intuitively, the optimal timing for an infinitesimal pollution source
should reasonably not depend on its historical contribution to the stock, as this is negli-
gible. Dropping the size assumption, we show how to reduce the minimisation prob-
lem to one not depending on the history of M , under linear evolution and suitable
linearity or additivity conditions on the damage functional. We employ a functional
analysis framework which allows for delay equations, non-Markovian driving noise, a
choice between discrete and continuous time, and a menu of integral concepts cover-
ing stochastic calculi less frequently used in resource and environmental economics.
Examples are given under the common (Markovian Itô) stochastic analysis
framework.

Keywords: optimal control; optimal stopping; environmental policy; emissions
reduction; linear model; Banach space; stochastic differential equations

1. Introduction

Consider an economic activity that leads to emissions of a stock pollutant, which again

leads to a certain damage per time unit, depending on the stock. We can at any time inter-

vene in the environmental profile – for example, cease the emissions by shutting down

(or possibly retrofitting with clean technology) at a given cost k, which may incorporate

direct costs, scrap values and/or the loss of utility from the services the economic activity

provides. The stock of a pollutant will trend upwards as long as the polluting activity per-

sists, and then will trend downwards towards zero contribution (or at most stay put) from

the time of implementation. Consider then the problem of finding the stopping (i.e. non-

clairvoyant) time which minimises the expected discounted total cost and damage.

A formal model for such a problem was treated in Pindyck (2000, 2002), slightly more

general than described in Section 2 below. Therein, the running cost was specified as the

bilinear form QðtÞMðtÞ; where MðtÞ models the pollution from the activity (as stock units)

at time t, evolving through a linear differential equation, and QðtÞ models the impact cost

factor, the damage per unit this (marginal) activity causes, also assumed to obey linear

dynamics, more specifically a geometric Brownian motion (gBm). Below we shall review

the solution of the minimisation problem, which turns out to admit reformulation into a prob-

lem which does not depend on the stock levelM .
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This property is the motivation for this paper, as indicated in the title: when can we

carry out the optimisation without paying attention to the pollutant stock level? To be a

bit more specific, this paper is not about those problems which after the analysis is carried

out turn out to have, e.g. the extreme optimal strategy of cleaning up everything immedi-

ately (no matter M) or nothing ever; the fully linear model treated in Pindyck (2000) and

Pindyck (2002) can be rewritten in a way where the pollution stock is taken outside the

optimisation operation. The question this paper sets out to answer is: without affecting

this property, which model assumptions can be relaxed or removed? To what extent do

we need (i) the running damage being linear (and the total damage functional affine!) in

the process M? (ii) linear dynamics of M – and with our control not affecting the first-

order term? (Pindyck 2002 calls for a generalisation of his specification at this point);

(iii) the analogous linearity conditions on Q? (iv) the restriction to irreversible once-and-

for-all policy measures? (both Pindyck 2000 and Pindyck 2002 call for richer models at this

point); (v) the dimensionality: one cost and one pollution stock? (vi) the Markovian Itô cal-

culus framework? (vii) the (functional and/or stochastic) independence betweenM andQ?

To sum up this paper’s contribution, consider these questions in reverse order: possi-

ble weakening of the latter assumption will only be briefly discussed in the closing

remarks, but all the assumptions that do not involve the linearity of/in M will be disposed

of. We shall employ a Banach space framework which allows fairly general models

including, e.g. the dispersion of a pollutant through (physical!) diffusion, and we shall

allow for flexible choices of strategies and opportunity sets, as long as we assume that

damage is an affine functional of the process M , which in turn is described by an affine

functional equation where our control enters additively, i.e. in the zero-order term only.

These restrictions – i.e. questions (i) and (ii) above – are known to be essential: more spe-

cifically, the optimal policy will depend upon the stock if the running damage is replaced

byQM2. There has been some confusion on this in the literature: Pindyck (2000) suggests

it does not, while Pindyck (2002, Equations (43)–(45)) suggests the opposite, although

both through reasoning that fails to hold true; Framstad (2011) rectifies only the former

error, and, finally, Balikcioglu, Fackler, and Pindyck (2011) do actually offer a (numeri-

cal) solution. Of course, replacing «QM» by «QM2» could equivalently be done by

replacing the dynamics, so the linear evolution assumption onM cannot be disposed of.

This paper thus fills a gap on characterisation of problems and their solutions, without

actually finding these solutions except in Example 5.3. The consequences of the charac-

terisations given herein – assuming of course validity of the model structure – could be

summed up as follows:

� Arguably, it is not uncommon to approach such optimisation problems making the

approximation by an infinitesimal agent. We establish some robustness of such

approximations: under the assumed model structure, size is not an issue.

� As the optimal policy does not depend on the pollution stock, it can also be imple-

mented without this information. One could think that the current pollution stock,

or historical records, could be easier to measure than, e.g. future damage per unit,

but the optimal policy will not depend on the future stock level either, thus not on

others’ emissions. The apparent trade-off between precaution and the value of run-

ning business-as-usual while waiting for information does not at all apply to the

uncertainty over future stock levels, as they have no impact on the optimal

adaptation.

� The optimisation problem could be easier to actually solve. In high-dimensional

systems, halving the dimensionality could make the problem tractable and dispose
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of the need for other (more objectionable) simplifications to the model. It should be

mentioned that once one has established the non-dependence by rewriting as in this

paper, it is not at all clear that the rewritten problem is any easier to solve – the

knowledge of the structure could maybe simplify the solution of the original

formulation.

On the other hand, if the model is not a valid description of the real world, this paper out-

lines clear-cut implications which could help falsifying not merely a single model, but a

model structure.

The paper is organised as follows. Section 2 reviews the simplest model, and sketches

a solution method different from Pindyck (2000) using the linear structure, and takes note

(Remark 2.2) of what properties are actually used to perform the operation. By formulat-

ing the model in a Banach space (i.e. a normed vector space, complete in the Cauchy

sense), we shall see in Section 3 that the property of non-dependence upon history (as

well as exogenous future emissions) will carry over when, in terms of the above model,

«everything about M» is linear; however, it shall also turn out that there are nonlinear

cases which could be of interest (see Section 4). Our approach will not be restricted to the

optimal stopping problem, but will cover continuous and discontinuous optimisation over

the environmental profile – increasing or decreasing emissions. Before that, we shall,

however, present the solution of the above model, and point out why linearity yields the

non-dependence property. The paper will return to Itô stochastic calculus in Section 5,

which offers a longer example generalising the problem given in Proposition 2.1. Then,

alternative stochastic calculi are briefly discussed. The exposition involves somewhat

specialised terminology, but the basic idea is simple: suppose M is given by a first-order

differential equation with an initial conditionMð0Þ ¼ m. Integrating the differential equa-

tion, we get an expression of the form

M ¼ X þ NðMÞ;

where N is the operator that integrates up (over time) the coefficient of the differential

equation; if the differential equation is linear, then we can take N as a linear operator

(«linear» without a constant term, as can be incorporated in X ). The functional analysis

framework does provide tools for computing as if N were a matrix J – in which case one

could solve for M , uniquely, under the invertibility of ðI �JÞ. The Banach fixed-point

theorem expresses the inverse as a geometric series, and states conditions for the exis-

tence through the convergence of this series. Taken this machinery for given, the reader

can appreciate the main content of the paper using merely linear algebra rules.

2. The simple optimisation problem

This section will briefly review a simplified version of the Pindyck (2000) model,

henceforth the «simple model». Suppose that the aggregate discounted economical and

ecological cost associated with a given activity to be closed down at time t at cost k is

given by Z 1

0

e�rtQðtÞMðtÞdt þ ke�rt; ð1Þ
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where the integral term aggregates the damages from stockM of the pollutant, assumed to

evolve according to the linear differential equation

dM ¼ ðbhðtÞ � dMÞdt; Mð0Þ ¼ m; ð2Þ

where hðtÞ could be interpreted as the emission rate and b is the fraction that finds its way

to the environment. h will in the simple model be restricted to being a positive constant

until implementation, and 0 thereafter (with M continuous at the implementation time).

The initial stateMð0Þ ¼ m is assumed non-negative.

The optimisation can be solved by dynamic programming. Leaving a formal setup for

Section 3, we shall now restrict ourselves to the result for the problem where hðtÞ is a
given constant up to the intervention time and 0 thereafter, henceforth a «one-shot

problem».

Proposition 2.1 (Pindyck 2000): Consider M following the dynamics (2) with b ¼ 1 and

hðtÞ restricted to the form hðtÞ ¼ h�1t2½0;t�, with M continuous at t and C1 elsewhere.

Suppose furthermore that Q obeys the (Itô) stochastic differential equation

dQðtÞ ¼ QðtÞ�ðadt þ sd ZðtÞÞ; Qð0Þ ¼ u > 0; ð3Þ

where Z is standard Brownian, and that r � a > 0, d > 0 and k ¼ kðhÞ > 0. Then, the

problem of minimising the expected value of (1) over all stopping times t is solved by

stopping first time Q exceeds

u� ¼ gkðhÞ
ðg � 1Þh ðr � aÞðr þ d� aÞ with g ¼ 1

2
� a

s2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

s2
� 1

2

� �2

þ 2r

s2

s
; ð4Þ

and the value function is

um

r þ d� a
þ kðhÞ� g

u

u�
� u

u�

� �g� �.
ðg � 1Þ if u < u�

1 if u � u�:

8<: ð5Þ

In particular, the optimal rule does not depend on m.

2.1. Removing the stock from the optimisation

Notice in the solution of the simple model that the m-dependent first term is the damage

that would incur even without the installation (t ¼ k ¼ 0). The term ðu=u�Þkg=ðg � 1Þ ¼
uh=
�ðr � aÞðr þ d� aÞ� is the damage from running the installation forever from now,

and the subtractive element represents the value of the option to stop. The latter two do

not depend on m. Let us give an argument for this property without using dynamic pro-

gramming nor the form (5) directly – although we can later use dynamic programming on

the one-dimensional problem we reduce the problem to. The solution forMðtÞ is

MðtÞ ¼ e�dtmþ e�dt

Z t

0

edshðsÞ ds ð6Þ
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so that when we restrict controls to hðsÞ ¼ h1s�t as above, with only t � 0 to choose,

damage and intervention cost add up to

m

Z 1

0

e�ðrþdÞt QðtÞ dt þ h

Z 1

0

e�ðrþdÞt QðtÞ
Z min ft;tg

0

edsds

 !
dt þ ke�rt: ð7Þ

Already before applying mathematical expectation, we observe that the first term – the

damage obtained by running forever – does not depend on t, while the two others do not

depend on m.

We can actually compute the distribution and expectation of (7) without dynamic pro-

gramming, looking up the distributional properties of the gBm and its stopping times in,

e.g. Borodin and Salminen (1996). However, we could just as well reformulate in terms

of a minimisation problem which does not depend on m, and then guess and verify by

means of the Bellman equation. Let us actually write out this, reorganising (7), as

m� h

d

� �Z 1

0

e�ðrþdÞt QðtÞ dt þ
Z 1

0

e�rt QðtÞedmin f0;t�tg � h=d|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:FðtÞ

dt þ ke�rt:

We then have that F satisfies

dFðtÞ ¼ FðtÞ� ða� d1t2½0;t�Þ dt þ s dZðtÞ
 �
; Fð0Þ ¼ uh=d :

For the minimisation of the expectation of the latter two terms, the Bellman equation

takes the form

�rV þ ayV 0 þ 1

2
s2y2V 00 þ q ¼ dyV 0 before intervention

0 after intervention:

�
The rest is routine: solve, find the strategy as a trigger y� by a C1 fit, and if one wishes a

fully rigorous proof, do the limit transition to an infinite horizon.

Remark 2.2: It is easy to see that (at least under the appropriate integrability conditions)

the optimisation will not depend of m even under the following generalisations:

(a) The argument on M uses, essentially, only an integrating factor approach, i.e. lin-

earity of the differential equation.

(b) Under linearity, it does not matter whether M models the total stock of the

pollutant, or if it models the project’s contribution: suppose the latter, and denote

everyone else’s contributions by L also driven by a linear differential equation

with the same decay rate, then we can either formulate in terms of the total ðLþ
MÞ (also following a linear differential equation with the same decay, though

likely with different emission levels) or split up. In either case, the optimisation

will separate into a term not depending on the decision and one not depending

on L or M (which enter only through the sum). In the problem of Proposition 2.1,

it means that the optimisation amounts to minimising

kðhÞ�
gmin f1; u=bug �min f1; u=bugg�=ðg � 1Þ – which is solved by choosingbu ¼ u� according to (4).
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(c) We need not restrict Q to be geometric Brownian. It can be any exogenously

given stochastic process which does not depend on M , and the optimal rule will

still only depend on the history and future law of Q (that is, its state if it is autono-

mous Markovian).

(d) k can be allowed to depend on Q as long as it does not depend onM .

(e) The discount rate need not be constant nor deterministic, as long as it does not

depend onM nor our control. In the above case, e�rtQ is geometric Brownian too,

and we could therefore merge the discount factor into the Q process – but then the

intervention cost would have to be represented as a process too. That is, however,

not an issue.

(f) The optimisation problem need not be restricted to optimal stopping – we can

replace the cost ke�rt by a cost process associated with hðtÞ and Q (possibly

history-dependent), as long as this does not depend on M .

As an example of the latter, Framstad and Strand (2013) extend the Pindyck model by

endogenising the initial infrastructure, then subject to a utility and an investment cost. In

particular, the initial investment will, as shown above, not depend on m. The paper also

discusses extensions like endogenising timing of the initial investment, and availability of

emissions-reducing technology to be retrofitted to the installation. As long as these quan-

tities do not depend on m nor the subsequent development of M , then neither will those

decisions of initial technology and (if controllable) its timing. Also extending to a model

with gradual build-up of infrastructure and subsequent reduction of emissions will have

decision rules not depending ofM .

Let us remark that although the question of dependence upon the stock does naturally

not apply to pollutants for which only the flow causes damage, it may for actually solving

the optimisation problems be useful to compare fast-decaying stocks with the limiting

case of flows. The equivalence of flow and stock in terms of non-dependence upon the

stock level is also exploited by, e.g. Harstad and Battaglini (2012) in a model for environ-

mental agreements.

Section 3 will formalise the property discussed, as well as more general linear models

for which it carries over.

3. Linear evolutionary equations in Banach spaces

We shall consider a more general setup than Section 2. We replace the initial state m by a

given function X unaffected by the control (hence the letter X for eXogenous). This will

cover, e.g. delay equations for which the evolution depends on the past, in which case X

is given initially as the history, the path t 7! fMðtÞgt�0. Analogously, we replace the ini-

tial state u for Q by an arbitrarily dimensional parameter denoted by G – for example,

this could be the history t 7! fQðtÞgt�0.

Let us first fix some terminology.

Definition 3.1: We shall use the term «does not depend on» to mean invariance under

partial shift, e.g. functional independence (contrasted to stochastic independence). Terms

like «might depend on», «will usually depend on» and «does depend on» should be self-

explanatory.

The property is now given slightly informally.
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Definition 3.2: Consider a minimisation problem indexed by ðG;X Þ 2 G	X. We shall

say that the problem does not depend on X if, for each G 2 G, the ordering of the controls

according to performance does not depend on X 2 X.

We shall in practice look for decompositions of the form

½something which does not depend on the control�
þ½non-negative functional of X ��½functional which does not depend on M � ð8Þ

(where again, «does not depend on M» means functional independence, even when cer-

tain values for X may be deduced from M without knowing the control). The first line

will be analogous to the «um=ðr þ d� aÞ» damage which incurs even without the pollut-

ant source in question. Usually, the «non-negative functional of X» will be a constant;

however, an example where it is not will be given in (13)–(15). It should be noted that

Definition 3.2 is weaker than the property that the optimal strategy does not depend on X ;

consider the example from the previous section – if one replaces ke�rt by some function

non-decreasing in t, then the optimal choice will be t ¼ 0 for all m � 0, even when the

M under the integral is replaced by any positive non-decreasing function ofM .

3.1. Sufficient conditions for the optimisation problem

not to depend on the exogenous X

The following simple application of the Banach fixed-point theorem essentially sums up

why the linear cases behave as they do. We could push the result further by making the

assumption of a left-inverse ðI� NÞ�1
ad hoc, but the following framework is sufficiently

general for the applications.

Lemma 3.3: Consider a Banach space M, with a bounded linear operator N : M ! M

such that some power is a contraction, and a linear functional F : M ! R. Then, for

Q 2 M, the unique solution M of the functional equation

M ¼ Qþ NM ð9Þ
is

M ¼ CQ; where C :¼ Iþ
X1
j¼1

N j ¼ ðI� NÞ�1 ð10Þ

is a well-defined bounded linear operator fromM ontoM. Furthermore,FM ¼ ðFCÞQ,
a linear functional acting on Q 2 M.

Assume a linear structure Q ¼ Aþ X , where A is a (fully or partially) controllable

component (in dynamic systems, interpretable as controlling the future evolution) and X

does not depend on the control chosen, and the following consequence is immediate.

Proposition 3.4: Given a set A 
 M, a (possibly nonlinear) functional G : A ! R, a

linear operator N : M ! M with some power being a contraction, and some X 2 M.

Then, the problem

inf
A2A

FM þ GðAÞf g subject to ð9Þ and Q ¼ Aþ X ð11Þ
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can be rewritten as

ðFCÞX þ inf
A2A

ðFCÞAþ GðAÞf g ð12Þ

where the latter optimisation problem does not depend on X .

Notice again that it does not matter whether M models the project’s emissions or the

total emissions, as long as the evolution is modelled by the action of a linear operator.

Under linearity, it does not matter whether this «evolution» is actually in (univariate)

time:

Remark 3.5: The motivating simple model of Section 2 concerned aggregate damage

over time. However, there is nothing in Proposition 3.4 that precludes time–space aggre-

gates; the vector M could be of arbitrary dimension, including space indexing dimen-

sions, and the canonical model for the dissemination of a pollutant in physical space – the

heat/diffusion equation – is of course linear.

It is, however, crucial that the N operator is not controlled.

Remark 3.6: Attempting to «fix» linearity by augmenting with more terms will violate

the crucial exogeneity of the N operator, which we need to keep the first term of (12) out-

side the optimisation. Let, for example, the model be _M ¼ h1½0;t� � d2M
2 � d1M , so that

M is trapped in the unit interval. Then, we attempt to introduce an infinite-dimensional

linear model with coordinates MiðtÞ ¼ the ith power of MðtÞ; it easily follows by induc-

tion that each _Mi can be written as a polynomial inM , hence as a finite linear combination

of the coordinates. However, then _M2 ¼ 2M _M ¼ 2M1h1½0;t� � d2M3 � d1M2, and the first

term makes the new infinite-dimensional N dependent on control – and that ruins the non-

dependence argument even if the said dependence occurs only in coordinates which do

not enter the running damage!

Let us work out how to fit the model of Proposition 2.1 into the applicability of

Proposition 3.4. The key is the contraction property established in the usual Picard–

Lindel€of iteration to hold locally, and just as in that argument, we can apply the following

piecewise:

� Our control A is now the cumulative emissions, the function t 7! R t
0
hðsÞ ds. For the

problem of Proposition 2.1, A is the set of functions of the form hminft; tg for

some stopping time t � 0.

� The X function is the constant m.

� N takes as input the function t 7!MðtÞ and returns the function t 7! �d
R t
0
MðsÞ ds.

� The aggregate damage is F, whose dependence on the initial condition G ¼ u 2
½0;1Þ is notationally suppressed.

The «piecewise» version of this is carried out on the partition 0 ¼ t0 < t1 <� � �, with ti
defined as the first time contraction failed in the previous step, by shrinkingM to the sub-

space/quotient space of functions with the known past t 7!Mðmin ft; tigÞ.
Remark 3.7: As mentioned in Section 2, a strategy for flow pollutants will not depend on

the state. In the case where the flow incurs a cost – ecological damage or Pigouvian tax –

then this is covered by the G functional, as it takes as input the entire emissions path and

hence can depend on the time-derivative. Nevertheless, it could be of interest to consider
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a flow as a limit of a fast-decaying stock. One can then let N represent a fast decay, and

renormalise Q. Letting Q ¼ X þ 1
�
~A and N ¼ 1

�
~N,M is solved by

M ¼ �ð~N � �IÞ�1ð�X þ ~AÞ

in terms of the resolvent ð~N � �IÞ�1
of ~N. If 0 is in the closure of the resolvent set, we

can then let � ! 0 through an appropriate sequence. Using again the problem of

Proposition 2.1, as an example, we can take d ¼ 1=� and ~h ¼ h=�; then
~A ¼ �~h ~N1½0;t� ¼ ~h� ð�I� ~NÞ1½0;t� � �1½0;t�

� �
, so that

M ¼ �ð�I� ~NÞ�1ðX þ 1½0;t�Þ þ ð�I� ~NÞ�1ð�I� ~NÞ~h1½0;t�
! ~h1½0;t� as � & 0; i:e: as d ! þ1

Thus, in the limit,M is precisely the flow expressed as a limit of normalised stocks.

4. Some nonlinear cases

Linearity turns out not to be a necessary condition for the property of Definition 3.2; we

have merely used that X splits out additively upon application of the ðFCÞ functional.
Furthermore, there are examples where not even this additivity holds, and where still the

optimisation does not depend on X . The question is rather whether these are to be consid-

ered merely degeneracies. Of course, that is a matter of definition and opinion – e.g. one

would likely consider it a degeneracy if one ad hoc, for the purpose of creating an exam-

ple, restricts the set of controls in just in order to satisfy the requirement of Definition 3.2.

Also, we have not ruled out F functionals which do depend on X explicitly; for example,

one can construct a cancelling of X by F ¼ ~FðI� NÞ, i.e. FQ ¼ ~FM , and M 7! ~FM

need not depend on X . For example, in the language of

Proposition 2.1, a functional that takes as input the path of edtMðtÞ �Mð0Þ will yield an

expression which does not depend on Mð0Þ ¼ m. The integral criteria of Sections 2 and 5

would not be prone to these kinds of constructed degeneracy, though.

The following will consider some cases which are nonlinear, but where the optimisa-

tion still does not depend on the initial stock. The first quadratic case is arguably the more

«degenerate».

4.1. A quadratic case

There turn out to be quadratic cases where G cancels out the part which does not depend

on X , leaving one which does, but in a way that might leave the optimisation not depend-

ing. Suppose that the objective to be minimised is no longer linear, but involving a qua-

dratic: FM þ hM ;Mi þ GðAÞ, for some suitable bilinear form h � ; � i. Suppose now the

particular form where G ¼ G0 �FCA� hA;Ai, where G0 does not depend on A. We still

assume the linearM ¼ CðAþ X Þ. Then, the minimisation problem becomes

FCX þ hCX ;CX i þ 2 inf
A2A

hCA;CX i ð13Þ

which is linear in X . If now the dependence on X separates out as a single univariate mul-

tiplicative factor, the minimisation does not depend on this as long as we restrict to the
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non-negative range. Let us again take the example from Proposition 2.1 as a starting

point. We modify the objective function (before applying the expectation) by replacing

the linear integrand by the quadratic e�rt QðtÞ ðMðtÞÞ2 – as long as we assume m � 0, this

is increasing inM – and then replacing ke�rt by the functional

G ¼ h2
Z 1

0

e�ðrþ2dÞt QðtÞ
Z t

0

eds ds

� �2

�
Z min ft;tg

0

eds ds

 !2
24 35dt ð14Þ

assuming r big enough to keep everything finite. It has some properties in common with

the problem of Proposition 2.1; it is decreasing in t, but positive whenever t < 1 and

u > 0. We can simplify the minimand toZ 1

0

e�rt QðtÞ


MðtÞ

�2
dt þ G

¼ h2
Z 1

0

e�ðrþ2dÞt QðtÞ
Z t

0

eds ds

� �2

dt þ 2mh

Z 1

0

e�ðrþ2dÞt QðtÞ
Z min ft;tg

0

eds ds

 !
dt

ð15Þ

and the minimisation does not depend upon non-negative m. Neither does the minimum,

trivially obtained by t ¼ 0. Again, we need to emphasise that establishing the «does not

depend» property of Definition 3.2 is more modest than the corresponding property of the

optimal strategy: G and F could have a common minimand without applying Definition

3.2, and there could be other cases where there is a «corner solution» (i.e. for one-shot

timing problems: such that the optimal t is a.s. 0 or a.s. þ1).

It seems tempting to guess that nonlinear F will lead to an optimisation problem

depending on X except degenerate cases – for a suitable opinion on «degenerate». The

next subsection will consider a class where the linearity condition is weakened.

4.2. Additivity over the exogenous or over the controlled part,

and worst-scenario optimisation

Suppose that we are not optimising a problem like (12), but, rather than with one fixed lin-

ear functional ðFCÞ, we are given a family of functionals with the criterion being to opti-

mise over the «worst case». In the following, a range of functionals L will replace the

single FC, with you playing against a worst-case opponent L 2 L. Modify the setup of

Proposition 3.4 such that the objective is

inf
A2A

sup
L2L

fLðX þ AÞ þ GLðAÞg: ð16Þ

Before giving examples, the reader should note that this kind of criteria will be better

suited to model Knightian uncertainty than expected utility with a universally agreed

upon probability measure. In this sense, a «scenario» is not an event, but should rather be

represented by a probability law, and worst-scenario optimisation would correspond to

picking the «most pessimistic» model. Now, which scenario is worst does (usually)

depend on our control. Assuming an argmax L� in (16) exists, then it is in general a
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function of A, and the subsequent minimisation with respect to A will depend on X except

in special cases. To illustrate, consider the following very simple example.

Example 4.1: Consider the one-shot problem of Proposition 2.1, modified as follows: the

intervention cost is uncertain, with disagreement over its distribution, but it is agreed

upon that it is stochastically independent of everything else, and revealed only once the

intervention is made. Everyone agrees on the other elements. We can then identify the

various probability scenarios with their respective expectation for this cost, and use that

for the «k» variable. Obviously, a higher k is bad for every strategy – strictly so except

for the «never intervene» strategy. The worst-case scenario does thus not depend on the

strategy – it is the highest k. With (16) as a criterion, we can thus simply plug the highest

k in, and we are back in the one-shot problem.

This model is also applicable for a problem where implementation is carried out only

if and when two (or more!) decision-makers unanimously agree upon doing so. Suppose

that they agree upon everything but the distribution over implementation cost as above;

then, the decision is made by the one who sees the highest trigger value u�, i.e. the highest
k, i.e. the worst scenario; thus, we are within the framework of (16).

This example simplifies because it does not depend on the strategy which scenario is

the worst. That need of course not be the case. Suppose, for example, that Q is not geo-

metric Brownian, and that it is uncertain at high levels which it has not yet hit or spent

enough time for a reliable estimate. (Although Brownian volatility can be measured accu-

rately by quadratic variation, rare-jump uncertainty is hard to assess without long time

series, and if the optimal rule for a given model is to stop at first hitting time, then heuris-

tically, we will at the critical range where we consider stopping not have data to estimate

from.) If now the scenarios involve beliefs for the model for Q and jointly the distribution

for the intervention cost, it need not be so that pessimism for one of the entities corre-

sponds to pessimism on the other. What is the worst scenario might then depend on the

candidate for strategy.

In such situations, where there is no universal «worst» scenario, it is of course tempting

to try to apply a minimax theorem to justify commuting the inf and the sup. Then, the

minimisation would be done L-wise, where the X splits out. This is the last part of the fol-

lowing proposition, which gives conditions for the minimisation not to depend on X (though

not for the maximisation for the worst case, which could still depend on X !).

Proposition 4.2: Consider the problem

inf
A2A

sup
L2L

fLX þLAþ GLðAÞg ð17Þ

where L is a given family of linear functionals L : M ! R and A is our control. The

potentially nonlinear functional G : A ! R can depend on L, although in part (i) below

we will assume it does not:

(i) If L 7!LA is constant on L for each A, and furthermore GL is constant with

respect to L for each A, the optimisation problem (17) reduces to

inf
A2A

L0Aþ GL0
ðAÞf g þ sup

L2L
LX ð18Þ

for an arbitrarily chosen L0 2 L.
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(ii) If instead L 7!LX is constant on L for each X , then (17) reduces to

L0X þ inf
A2A

sup
L2L

LAþ GLðAÞf g ð19Þ

again, for an arbitrarily chosen L0 2 L.

(iii) Alternatively, suppose that L is convex and A is convex and compact, and that

L 7!GLðAÞ is upper semicontinuous and quasiconcave and A 7!GLðAÞis lower
semicontinuous and quasiconvex. Then, (17) can be written as

sup
L2L

LX þmin
A2A

f LAþ GLðAÞg
� �

; ð20Þ

provided the inner minimum is attained.

Neither of these three minimisation problems with respect to A depends on X .

Proof: The first two parts are self-evident. The assumptions for part (iii) are those of Sion’s

generalisation of the celebrated von Neumann minimax theorem (cf. e.g. Komiya 1988). &

The interpretation for probability scenarios is as follows: in case (i), everyone agrees

upon the consequences of our actions, given the exogenous X component (e.g. the history),

which splits out linearly. In case (ii), everyone agrees upon the damage incurred from X , e.g.

if it is known history with known consequences. For the last case (iii), we are in a commut-

ing minimax situation; it should then be remarked that the convexity ofA could be a signifi-

cant restriction; for the one-shot case, the set of functions of the form AðtÞ ¼ hmin ft; tg is

not convex, and one will have to extend the problem for a hope to apply part (iii).

It is worth mentioning that worst-scenario optimisation has a connection with the

so-called risk measures of mathematical finance, where convex preferences over Knightian

uncertainties (often called «model risks») can be represented through worst-case Knightian

risks with a «penalty function» adjusting for the credibility of the scenarios. See, e.g.

F€ollmer and Schied (2002a, 2002b) or Frittelli and Gianin (2002).

5. Linear (stochastic) differential equations

This section concerns cover the case where M is governed by a stochastic differential

equation. The standard existence and uniqueness result is a Picard–Lindel€of argument,

which of course applies under linearity, so it is a special case of Proposition 3.4, but if we

want to solve the problem (11) from the representation (12), we would want to write out

the latter. Notice though that it is not necessarily desirable to work with (12) – especially

as Proposition 3.4 provides us with the information that we can look for an optimal rule

not depending on the state of M . The next subsection will cover the semimartingale Itô

differential case, and then other integrals will be sketched in Section 5.2.

5.1. Itô stochastic differential equations

Let us fix the setup and notation for this subsection:

� We shall work on a (notationally suppressed) usual stochastic basis; namely, a prob-

ability space equipped with a right-continuous filtration complete at time zero.
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� Vectors are column vectors, unless indicated by the transposition superscripty. The
symbol � denotes the Euclidean inner product on Rd , but will be used for products

between scalars as well.

� For stochastic processes, denote by superscript c the continuous part, and for dis-

continuities: DþY ¼ Y ðtþÞ � Y ðtÞ, D�Y ¼ Y ðtÞ � Y ðt�Þ. We will use D when the

interpretation is unambiguous. Furthermore, we use accents �Y ( �Y ) for the left-

continuous version (right-continuous version) of Y .

� The reader should be aware that as matrix products do not commute, notations like

dPðtÞMðtÞ may be necessary even whenM will be part of the integration.

� Differentials denote Itô-type integration.

We now specify the objective function; we assume that the optimisation problem is to

minimise the expected value of the functional

Z 1

0

�
Mðt�ÞydDðtÞ þ dCðtÞ�; ð21Þ

where we shall, ad hoc, assume integrability. Since we are in a multidimensional setting,

the discount factor e�rt has been incorporated into the processes D and C (mnemonics:

Damage from the pollutant, Cost of control).

The modelling building blocks are the following entities:

Measurability/continuity assumptions on the processes. We assume that all processes

are adapted, and their sample paths possess both left and right limits. In addition, the

following are standing assumptions:

(a) The Rd-valued process D, assumed right continuous, is an exogenously given

(uncontrolled) process which aggregates the environmental damage of the pollut-

ant stock. dD specialises F but generalises e�rtQðtÞ dt.
(b) M will be the pollutant stock, which we can affect through a predictable, hence

assumed left-continuous, control denoted by S; we introduce this for the sake of

interpretation, although we will not write down the explicit way it enters. t 7!M

need not be left or right continuous. We shall introduce a driving process Q for M ,

and the following measurability/continuity conditions will apply for Q and forM :

� On intervals where S is constant,M will be assumed right continuous.

� At discontinuity times T for S, henceforth interventions, SðTÞ does not affect
MðTÞ, only MðTþÞ. In other words, we have that MðTÞ does not depend on

DþS ¼ SðTþÞ � SðTÞ, which may in turn depend on the past up to and includ-

ing T (the T -measurability of this difference is the assumed predictability), and

which affects DþM . Due to the assumed right continuity of the filtration,

MðTþÞ is T -measurable; at time T , we know our intervention DþS, and there

is no randomness drawing the right limit.

(c) The process C – specialising the G functional but generalising ke�rt – is the

incurred cost of the control, allowed to depend on the past (subject to assumptions

specified below), in particular, the entire past path of S, but we shall below assume

it does not depend on X . As C is only an integrator for the continuous discount

factor, we do not need to worry about left-hand or right-hand jumps, as
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discontinuities contribute only through CðTþÞ � CðT�Þ. We can therefore work

with any version.

The dynamics for M will in this subsection be assumed to obey the following form (in

terms of transposes, to get the differential post-multiplied):

dMyðtÞ ¼ M yðt�Þ dJyðtÞ þ dQyðtÞ; Mð0Þ ¼ m; ð22Þ

where X is fully represented through m, and the N functional is specified as integration

with respect to the given Rd	d-valued right-continuous process J. In order to fit to the

setup, put Qð0Þ ¼ m and A ¼ Q� m; then, the Rd-valued process Q� Qð0Þ ¼ Q� m

can be influenced by the control (but shall not depend onM or m).

We then have the following.

Proposition 5.1: Suppose that for each given control S, the following holds: J, D, Q and

C are given semimartingales, the two first right-continuous, and that the jumps satisfy,

with probability 1,

DJD �Q 2 column space ðI þDJÞ; all jumps: ð23Þ

Suppose furthermore that M uniquely (up to version) solves the (Itô) stochastic differen-

tial equation (22). Then, there exists some Rd	d-valued semimartingaleP, given by

Pð0Þ ¼ I ; dPðtÞ ¼ �dJðtÞ�Pðt�Þ ð24Þ

– form with time-differentials post-multiplied: ðPy dJyÞy – such that (21) equals, if at

least one integral converges,

my
Z 1

0

PðtÞy dD

þ
Z 1

0

�
DþQð0Þ þ

Z
ð0;t�

Pðs�Þ�1
�
�QðsÞ � Y ðsÞ��yPðtÞy dDþ dCðtÞ

 !
; ð25Þ

where Y is a right-continuous process such that, in terms of Itô differentials,

dY c ¼ dJc dQc; ðI þDJÞDY ¼ DJD �Q: ð26Þ

In particular, if J and D do not depend on S, then the minimisation over S does not

depend on M.

Proof: Notice first that (23) ensures that (26) can be satisfied even when DJ has an

eigenvalue of �1. Now M enters directly the objective only through the left-

continuous version. We can therefore first do the differential calculus on the right-

continuous version �M , which satisfies (22) except at intervention times. Notice that
�M ð0Þ ¼ mþ DþMð0Þ ¼ mþ DþQð0Þ, and DþQð0Þ depends solely on DþSð0Þ. We claim
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that

�M ðtÞ ¼ PðtÞmþPðtÞ
�
DþQð0Þ þ

Z
ð0;t�

Pðs�Þ�1
d
�
�QðsÞ � Y ðsÞ��: ð27Þ

To see this, differentiate using the Itô formula. Suppressing time arguments,

d �M ¼ ðdJÞ �M þPP�1 dð �Q � Y Þ þ ðdJÞ�dð �Q � Y Þ� ð28Þ

where the latter term is the cross-variation expressed as Itô differentials. Now, cancel

terms using (26). &

Remark 5.2: A few comments are appropriate.

(a) The restriction (23) applies in the case where the jump amplitude could possibly

have �1 as an eigenvalue (in which case, at the eigenvector, J would cause a

jump to null). It limits the possible jumps Q could make at the same time. The

condition will be satisfied whenever a coordinate of M jumps to a state not

depending on the pre-jump state MðT�Þ; then, the new post-jump state is zero. It

thus covers cases where the pollutant should vanish at a jump (say, if we are model-

ling a case where some exogenous agent could at some point T choose to clean up).

(b) The model and result admit cases where we actually intervene in the pollution

stock, but only through Q – that is, in absolute numbers, not in percentages. The

intervention does not depend on the level; if damages and costs are so that it pays

off to remove 1 unit of the pollutant, then that decision does not depend on the

stock level. This may be objectionable when M models a cardinal level, as it

could bring M outside the first orthant – and capping the cleansing operation to

keep stocks non-negative would mean that the strategy takes the state of M into

account. This objection does, however, not apply to a discrete emission which

instantly increases one or more coordinates ofM .

(c) These discrete interventions in Q may seem to be not captured in the above argu-

ment, but no information is lost. Even if the proof only uses the left- and right-

continuous versions, then DþSðtÞ could in principle be based on the observation

ofMðtÞ as well (as that is measurable), and not merely the left limit. Without wel-

fare loss, it will actually not depend on MðtÞ – that property is now proven, not

merely assumed.

(d) The dynamics of M can depend on D, but not the other way around; if D depends

on our control, then the m-dependent part may of course also do so. M and D

may, however, be driven by common given processes – just augment D with

these, and augment M with zero-valued coordinates to match the dimension for

the dot product.

(e) Even though D is assumed a semimartingale, it is still a generalisation of the «no

assumptions needed» Q of Remark 2.2(c); recall that DðtÞ does not correspond to

QðtÞ, but to R t
0
e�rsQðsÞ ds.

(f) Proposition 5.1 covers linear stochastic difference equations. To those who have

only familiarised themselves with the stochastic integral with respect to Brownian

motion and then maybe with respect to L�evy motions, Markov chains as Itô
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diffusion-type processes may look as a bit of an odd approach. However, the semi-

martingale concept does not require jump times to be random, and processes could

very well be constant between integer times – all such processes are in fact semi-

martingales, as long as they are adapted.

The linearity of the evolutionary operator covers higher order differential equations for

M . Assuming ad hoc stability and finite expectation, the optimal strategy still does not

depend on M if the model of Proposition 2.1 is modified to allow for an nth-order linear

differential equation

Xn
i¼0

di� d

dt

� �i

MðtÞ ¼ h�1t2½0;t� with M 2 Cn�1 \ Cnð½0;1ÞnftgÞ: ð29Þ

In the following example, we shall cover the stable non-oscillating case with n ¼ 2.

Example 5.3: Consider the model of Proposition 2.1, except that M obeys Equation (29)

with n ¼ 2; d2 ¼ 1 and d1 > 2
ffiffiffi
d

p
0, d0 � 0. With characteristic roots

λ1 ¼ � d1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21
4
� d0

s
< λ2 ¼ � d1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21
4
� d0

s
ð30Þ

and initial dataMð0Þ ¼ m, _Mð0Þ ¼ m, we get

MðtÞ ¼ h

d0
þ 1

λ2 � λ1
λ2 m� h

d0

� �
� m

� �
eλ1t � λ1 m� h

d0

� �
� m

� �
e λ2t

�

� h

d0
λ2
�
1� eλ1min f0;t�tg�� λ1ð1� eλ2min f0;t�tgÞ

n o�
: ð31Þ

We see that the m and m terms split out linearly in a way that does not depend on emis-

sions. However, with h given, we can just as well split out the entire first line, which does

not depend on t. The first line of (31) yields the damage

uh

d0ðr � aÞ þ
u

λ2 � λ1

λ2 m� h
d0


 �
� m

r � λ1 � a
�
λ1 m� h

d0


 �
� m

r � λ2 � a

0@ 1A
¼ h

ðr � aÞ þ ðr � λ1 � λ2 � aÞmþ m

� �
� u

ðr � λ2 � aÞðr � λ1 � aÞ ;
ð32Þ

while the contribution from the rest, including the intervention cost, is

ke�rt � h

d0ðλ2 � λ1Þ
Z 1

0

e�rtQðtÞ λ2ð1� eλ1min f0;t�tgÞ � λ1ð1� eλ2min f0;t�tgÞ
n o

dt
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which has expected value

E ke�rt � h

d0
e�rtQðtÞ

Z 1

0

e�ðr�aÞt 1þ λ1eλ2t � λ2eλ1t

λ2 � λ1

� �
dt

� �
; ð33Þ

where we have used the strong Markov property to perform the time change, and the mul-

tiplicative form of the gBm. Again, by the strong Markov property and the continuity of

the gBm, it suffices to consider stopping times of the form bt ¼ first hitting time for

½bu;1Þ, and then one can optimise over bu:
k � bu� h

d0
� 1

r � a
� r � λ1 � λ2 � a

ðr � λ2 � aÞðr � λ1 � aÞ
� �� �

�E½e�rbt �
¼ k � hbu

ðr � aÞðr � λ1 � aÞðr � λ2 � aÞ

 !
�min f1; ðu=buÞgg ð34Þ

with g given by (4). The minimiser is

u� ¼ g

g � 1
� kðhÞ

h
� ðr � aÞðr � λ1 � aÞðr � λ2 � aÞ ð35Þ

– compare to (4) again – so that (34) becomes �minf1; ðu=u�Þgg � k=ðg � 1Þ. To get the

value function, and on a form comparable with (5), we add the (32) contribution:

ðr � λ1 � λ2 � aÞmþ m

ðr � λ2 � aÞðr � λ1 � aÞ u þ kðhÞ� g
u

u�
� u

u�

� �g� ��
ðg � 1Þ if u < u�

1 if u � u�:

8<: ð36Þ

The first term is the damage which incurs with or without the project in question, and we

see that the contribution from the optimised project has precisely the same form, except

with a modified formula for the optimal trigger level u�. Observe that λ1 and λ2 are both

negative, so the condition r > a ensures that everything converges.

5.2. Some considerations beyond the Itô integral

The previous subsection employed the standard stochastic calculus setup: the Itô integral

with respect to semimartingales. The approach does, however, apply to other integral con-

cepts as well.

Let us first point out that fractional integrals – whether they are of Erd�elyi–Kober
type (unifying and generalising both the Weyl and Riemann–Liouville types, see Pagnini

2012) or Hadamard type – are linear and can be covered by the form (9). Fractional differ-

ential equations have been proposed to model anomalous diffusion («diffusion» here

meaning the physical phenomenon, e.g. particle flows in hydrology) (see, e.g. Chen et al.

2010). Another use is to allow for non-semimartingales, e.g. the well-known fractional

Brownian motion, as a driving noise in differential equations. The brief exposition on

fractional calculus in what follows is intended to facilitate the latter – the Stratonovich

type and Hitsuda–Skorohod/Wick–Itô type integrals are valid also for the semimartingale

framework as a special case.
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An example: fractional Brownian motion. The fractional Brownian motion (fBm) ZðhÞ of
Hurst parameter h 2 ð0; 1Þ is a Gaussian process with zero mean, and covariance struc-

ture (for the univariate case) E½ðZðhÞðTÞ � ZðhÞðtÞÞ2� ¼ jT � tj2h. We shall work with the

continuous-path version (ensured by the Kolmogorov continuity theorem). The term was

coined by the seminal paper Mandelbrot and Van Ness (1968), defining it as the

(h� 1=2)-order Weyl fractional integral (/derivative) of the ordinary Brownian motion Z,

as, for h 6¼ 1=2,

ðconstantÞ 	
Z t

�1
ðt � sÞh�1=2 � ðmax f0;�sgÞh�1=2
h i

dZðtÞ; ð37Þ

but fBm also admits finite-memory Erd�elyi–Kober representations (e.g. Dzhaparidze and
van Zanten 2004). fBm has negatively correlated increments for h < 1=2. For h > 1=2
it has positively correlated increments, and the long-memory property that the covariance

of the increments ZðhÞð1Þ � ZðhÞð0Þ and ZðhÞðTÞ � ZðhÞð1Þ diverges to þ1 with T . The

long memory has been a rationale to consider it as a model for various phenomena,

including finance; however, not being a semimartingale, it leads to arbitrages (i.e. riskless

free lunches) in frictionless markets with continuous trading. Among the vast literature

on the topic, Rogers (1997) is an example where he not only establishes an arbitrage strat-

egy, but also shows how to fit the same long-memory property into an arbitrage-free semi-

martingale model. fBm has also been used in the modelling of pollution (see, e.g. Guo

et al. 2009).

The non-semimartingale property means that the fBm as an integrator behaves some-

what different from the ordinary Brownian motion. We mention a few cases suited to

allow these kinds of processes as integrators.

The integrals of Young and Stratonovich and beyond. For stochastic analysis

with respect to Brownian motion, there is the well-known Stratonovich integral, formal-

ised by choosing the midpoint time for the integrands, taking limits of sums

Y
�
1
2
ðtiþ1 þ tiÞ

��
Zðtiþ1Þ � ZðtiÞ

�
. The Stratonovich integral admits an ordinary chain rule,

without second-order terms. It turns out that if the driving process is continuous (disconti-

nuities may be handled jump by jump) and with paths of zero quadratic variation, the Itô

and Stratonovich integrals coincide, and equal the Young integral, which is, in some

sense, the only continuous pathwise integral under this regularity. The Stratonovich inte-

gral thus extends the Young integral while keeping its (ordinary) chain rule. If we assume

continuous sample paths and the ordinary chain rule in Proposition 5.1, we put Y ¼ 0 and

delete DZ and cross terms. Even though the optimisation problem could be cumbersome,

we know that the state and history of M need not be taken into account, reducing the

dimensionality of the optimisation problem.

Further generalisations can be given through the theory of rough paths (see, e.g. Lejay

2003), and the linear differential equations that arise with those integrals admit existence/

uniqueness by Picard-type iteration.

The Wick–Itô and Hitsuda–Skorohod type integrals. Originating from white noise the-

ory, these integrals are defined on distribution spaces, wherein Brownian motion is actu-

ally differentiable. The Wick–Itô formulation does in fact use the time-derivative of

Brownian motion, allowing a Riemann-sum-based integral (technically defined in the
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Bochner or even Pettis sense), written as

Z T

0

Y ðtÞ � _ZðtÞ dt; ð38Þ

where the � denotes the (associative, commutative) so-called Wick product. This is not a

pathwise («v-wise») integral, as the Wick product is not a product between the realisa-

tions of random variables, but a product of probability distributions (somehow in the

sense that the convolution product is); it has the property that the expectation of a Wick

product is the product of expectations. Furthermore, the Wick–Itô integral admits a Wick

product version of the ordinary chain rule, on a certain closure of the set of Wick polyno-

mials
P

ciU
�i – for example, the Wick exponential exp ��ZðtÞ� ¼ 1þPi2NZðtÞ�i=i!

will have the time-derivative _ZðtÞ � exp ��ZðtÞ�. References for white noise theory with

applications to Wick–Itô differential equations include the book of Holden et al. (1996),

and for fBm, Elliott and van der Hoek (2003).

Let us simply perform the formal algebraic manipulation using the Wick-type inte-

gral, to see the consequences for the model (22) – assuming for simplicity continuous

sample paths. First, we need a Wick-integrating factor:P ¼ exp�ðJÞ. Then,M becomes

MðtÞ ¼ PðtÞ �mþPðtÞ �
Z t

0

PðsÞ�ð�1Þ � dQðsÞ ð39Þ

¼ exp ��JðtÞ� �mþ exp��JðtÞ� � Z t

0

exp���JðsÞ� � _QðsÞ dt: ð40Þ

Now the first term goes outside the minimisation. Let us assume that we are again in a

one-shot model where _QðtÞ can be written as h1½0;t�. If the damage functional is on Wick

form – the differential being � dD ¼ �Q dt – then we are in a sense lucky, as we then

have a pure Wick formulation, and one might apply expectations first and optimisation

afterwards. However, mixing the v-wise product and the Wick product will usually lead

to intractabilities, and converting back and forth is certainly not trivial. For example, if

we have pathwise differential dD, we would want to calculate the probability distribution

exp��JðtÞ �JðsÞ� � 1½0;t� and evaluate at v; the author is not aware of any tractable way

to do this for general stopping times t, and without doing this evaluation, we only have a

distribution, not a response to path; without evaluation, the Wick product does not state

how to respond to observations. Thus, the modelling choice at each «product» occurring

in the model – Wick-type vs. v-wise type – has non-trivial consequences to model behav-

iour. The linearity is still key to the property of Proposition 3.4 though, and the knowl-

edge that the optimisation can be carried out without regard to X could potentially help

making the problem tractable.

The Wick–Itô integral is often employed in anticipative stochastic calculus – for

example, in (40), the � in front of m allows it to be random, and the theory even admits it

to depend on future states of M . Indeed, there are other integral concepts designed for

anticipative stochastic calculus (see, e.g. Kuo, Sae-Tang, and Szozda 2012 for a fairly

recent one).

Stochastic partial differential equations. As pointed out in Remark 3.5, the theory of

Proposition 3.4 covers (linear) time–space evolution modelled by the heat equation. The

dissemination of the pollutant in space could also be subject to randomness. Such models
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could be hard to accommodate under ordinary stochastic calculus, as one could easily

encounter models where one would want multiparameter Brownian motion and its sec-

ond-order derivative. However, there is a well-developed theory based on white noise

analysis, using the Wick–Itô approach – potentially leading to the same difficulties as for

optimal stopping, in converting the model to one for response to actual observations.

Again, see the book Holden et al. (1996).

6. Closing remarks

For linear models for the decay of pollution, as considered in this paper, the optimisation

can be carried out without regard to the stock. This is a property often assumed as a valid

approximation for idealised infinitesimal agents, but under linearity it holds exact regard-

less of size and also yields non-dependence with respect to others’ exogenously given

future emissions. The result admits general damage functionals as long as they do not

depend on M explicitly and so that the functionals themselves are not controllable, and

are linear or possess the appropriate additivity property.

In Itô stochastic differential equation models, there are possible model features we

have not explicitly mentioned: the impact cost factor can even covariate with M in terms

of Itô differentials, and the dynamics forM could depend on D or Q;M still separates out

as long as N and F are given functionals unaffected by our actions. Covariating Itô dif-

ferentials seems natural from a small agent point of view, when the impact could in reality

depend on the aggregate stock; then, upward fluctuations (or jumps) in the aggregate

stock could cause Q to increase, while it would still be a reasonable approximation to dis-

regard a small agent’s contribution to this effect. However, the reverse causality should

definitely be allowed in a multiagent model, where there would be feedback from the Q

level to the agents’ behaviour, and their respective «u�» triggers will vary over the agents’
cost structures represented by k or more generally the G functional. Allowing for this, the

«size no issue» feature must be expected to break down: if the other agents’ behaviour

can affect Q, then our behaviour might as well, and reasonably the effect can only be dis-

regarded if we are small.

For future research, the non-dependence result could make it easier to guess a solu-

tion form for problems with linear models, and then fit and verify by the tool of choice,

e.g. dynamic programming. Furthermore, the reduction of dimensionality might be

helpful for numerical solutions; for example, is the kind of transformations employed in

this paper useful for more tractable optimisation in models which include stochastic

(physical) diffusion of the pollutant? Finally, to what extent are the generalisations

from linearity to the additivity conditions used in Section 4 useful? Could the non-

dependence property, e.g. carry over to reasonable models for heterogeneous beliefs, as

remarked at the end of that section? The limitations beyond the linear models will be a

topic of interest, and only future research can tell whether this is of relevance for

applications.
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