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Correlation bias correction in two-way
fixed-effects linear regression
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When doing two-way fixed-effects ordinary least squares estimations, both the variances and covariance of the
fixed effects are biased. A formula for a bias correction is known, but in large datasets, it involves inverses of
impractically large matrices. We detail how to compute the bias correction in this case. Copyright © 2014 John
Wiley & Sons, Ltd.
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Introduction

We consider a linear model of the type
y=XB+DO+Fy +e, (1)

where y € R” is an outcome, X is a matrix of covariates, § is a vector of parameters. D is an n x kg matrix resulting
from dummy encoding a factor, with parameter vector 6. F is an n x ky, matrix resulting from dummy encoding another
factor, with parameter vector ¥, and € is a normally distributed error term. This is a perfectly ordinary least squares
(OLS) system, but our assumption is that ko and ky, are large, for example, of the order 10°-107. This creates some
computational challenges.

Remark 1.1

Note that the phrase ‘fixed effects’ are used slightly differently in statistics and in econometrics. When using OLS,
every parameter is of course a fixed effect, as opposed to a random effect, but it is customary in some econometric
circles to refer to the 6 and  in (1) as the fixed effects, that is, time-constant individual effects.

The canonical example in the panel data econometrics literature of this kind of model can be found in Abowd et
al. (1999), where the outcome y is the wage, D is a matrix of dummies for each individual, and F is a matrix of
dummies for each firm. 6 are time-constant individual fixed effects, ¥ are time-constant firm fixed effects. They study
the correlation cor(D@, Fy) as a way to investigate whether ‘high-wage’ workers tend to work in ‘high-wage’ firms.

Some authors (e.g. Card et al., 2013) do variance decompositions of the form
var(y) = var(Xg) + var(D6) + var(Fyr) + 2cov(D@, Fyr) + 2cov(---) + ---

to use changes in the decomposition over time to study wage inequality trends.
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We assume that 3, 8, ¢, and ¢ are estimated by OLS, for example, with the methods of Carneiro et al. (2012), Gaure
(2013b), Ouazad (2008), and Schmieder (2009). Andrews et al. (2008) show that the variances 67 = var(D§) and

&@ = var(Flﬁ) are positively biased, and that the covariance 64y = cov (Dé, Fx/}) is typically negatively biased, and

they give explicit formulas for the magnitude of the biases. The biases can be substantial and can even change the
sign of the correlation estimate: ggy = 69,#(69253,)—1/2. This particular type of bias is known as /imited mobility bias.

A challenge with the bias correction formulas of Andrews et al. (2008) is that they involve the inverses of large square
matrices, of sizes kg and k. Given that these quantities can be of the order 10°-107, the method is impractical to
use directly with commonly available computing contraptions. Some authors acknowledge the possible bias but do
not compute it (e.g. Card et al., 2013; CorneliBen & Hiibler, 2011; Davidson et al., 2010; Graham et al., 2012;
Sgrensen & Vejlin, 2013). We therefore venture to evaluate the bias correction expressions without handling any large
matrices. Our contributions are mainly in Section 5, but for completeness and consistency of notation, we include a
derivation of the bias expressions in Section 3.

In applications, there can be other sources of bias than the one corrected by the methods presented here, for example,
related to endogenous selection. To solve such bias problems, other models could be used, as in Bartolucci & Devicienti
(2013) and Mendes et al. (2010). It is also pointed out in the literature, for example by Card et al. (2013), that the
OLS assumption of independently identically distributed (i.i.d.) errors is dubious in some applications. Adaptation of
the bias expressions to heteroscedastic and clustered residuals is sketched in Section 4. The results of some trial runs
are reported in the Appendix.

Preliminaries

We fix some notation and recall some standard facts about (orthogonal) projections. In general, we let / denote the
identity matrix of appropriate size. We assume tacitly that our matrices and vectors are of the appropriate size. The
letters A and B are used to denote general matrices and have no fixed meaning. The letter Q is used to temporarily
name particular matrices for clarity. The letter m is used for an arbitrary natural number.

For a matrix A, we denote by R(A) its column space, or range. We denote by M, the projection onto the orthogonal
complement of R(A). Note that in general, My = Mﬁ1 = Mﬁ by the defining property of projections. For A of full-column
rank, we have

My =1—AAA) AL, (2)

but M, is defined for any matrix A. For two matrices A and B, we denote by My g = Mp 4 the intersection M4 A Mg,
the projection onto the complement of the column space of the block matrix [ A B 1. In general, Ma gMs = MaMa g =
Ma g, and My gA = 0. A standard result in operator theory is that if R(A) is orthogonal to R(B), or if R(A) C R(B),
then Mag = MaMg = MgM4. We denote by 1 = (1,1, ..., 1) a vector of the appropriate length where each coordinate
equals 1. Thus, My is the projection that subtracts the mean. For a vector x, we denote by d(x) the diagonal matrix with
x on the diagonal. We will now and then use the defining property of the trace, tr(AB) = tr(BA), without mentioning.
This includes ‘doubling’ of projections: tr(AMg) = tr(MgAMpg). We use var(-) and cov(-,-) to denote the numerical
sample variance and covariance of sequences of numbers. The capitalized versions Var(-) and Cov(:,-) are used for
variance and covariance matrices of random variables.

With this notation, we may state some assumptions for our system in (1). There is no intercept in X. We have removed
a reference group from v/F. There are no collinearities in the system; in the language of Abowd et al. (2002), there is
a single connected group, or connected component. These assumptions are necessary for identification of 8 and .
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In particular, Mg xD and Mp xF are assumed to be of full-column rank, so that both D!Mg xD and FtMp xF are invertible.
We do not assume that X is small; that is, X may, among other covariates, contain one or more high-dimensional
dummy-encoded factors, as in Carneiro et al. (2012).

Remark 2.1

Given a vector v, we note that Gaure (2013b, Algorithm 3.1) gives a procedure by which we can compute Mp rv. It
is not mentioned explicitly by Gaure (2013b) that the same method can be used to compute Mguv for an arbitrary
n x k matrix A, not only for matrices arising from dummy encoding. The theory and algorithm are the same, but the
actual computation of each projection of Gaure (2013b, Algorithm 3.1(2) and (15)) corresponding to columns of A,
is slightly more complicated. Such a procedure has been implemented by Gaure (2013a) through implementation
of interactions between factors and continuous covariates; one may use a factor with a single level. In the present
paper, there is no intrinsic dependence on D and F being dummy-encoded factors; most of the theory is the
same if D and F are interactions between factors and covariates, or something else; but the author knows of
no such application.

The following lemma will come in handy later.

Lemma 2.2
If A and B are matrices, then Myp = MaMu,s. If MaB has a full-column rank, we have the formula Myp =
My — MAB(BtMAB)_lBtMA.

Proof

First, we note that Ma(l — My ) is a projection. Now, let P = | — My,s. P is the projection onto R(MsB), that is,
R(P) = R(M4B). Note that R(MsB) is spanned by the columns of MsB, that is, RIMaB) = MaR(B). We also have
that the columns of I — My g span R(A) + R(B). So that RMa(l —Mag)) = Ma(R(A) + R(B)) = MsR(B) = R(P). Two
projections with the same range are equal, o P = Ma(I —Mag). That is, | =My, = Ma —Ma g. Multiplying through
with My yields My — MaMy,8 = Ma — Ma g, which can be rewritten as My g = MaMy,. In the case that MsB has a
full-column rank, we have from (2) that My,s = | — MaB(B'MaB)~'BtM,. O

Variance and covariance bias

When deriving the bias correction formulas, we will follow the exposition by Andrews et al. (2008) but change
the notation to reflect our emphasis on the projections of the type M4, which we can compute. For the asymptotic
statistical properties, we refer the reader to their paper. As in Andrews et al. (2008, (8-10)), we have biased sample
estimates for the variance of DA and Fi and their covariance:

~  OIDIM,DO
65 = var(D(?) = Tl 3)
N UFIMLFY
Gy = var(Ft//) = wn—ll/f (4)
- At Dt 7
5oy = COV (DQ,FI//) = w (5)

We take the expectation of (3) as in Andrews et al. (2008, (16)):
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+ 89, (6)

g (#'D'M1D6)) _ 6'D'M1D6
n - n
where the bias term
tr (DtMlDVar (9))

8p = )
6 n

is found by using the general formula for the expectation of a quadratic form

E(x'Ax) = E(x)AE(x) + tr(AVar(x)), (7)
with A = DI!M1D and x = 6.
Our interest is in the term
,  0'D'M1D6
09 = T

We can readily estimate the left-hand side of (6) as 67 from the OLS estimate 6. To find the bias 8y, we need an
expression for Var(é). The problem is the same for 5@ and Gyy, but we detail it only for the 8 case.

Remark 3.1
We note that the bias problem is symmetric in 6 and , even though not all our formulas will be syntactically
symmetric. Also, 692, 61/2,, and 64 do not depend on which reference group we have picked, neither do they depend

on whether the reference group is in 6 or . Indeed, M1D6 and MyF v are independent of where the reference
group is. To see this, a change of reference group has the same effect on Df and F 1/7 as a transformation of the type
DO +> DO —al,Fyr > Fyr + al, for some a € R. But we have M11 = 0. That is, in for example, (6), both 5} and
ag are independent of the whereabouts of the reference group, so the trace term is independent of it as well. For
simplicity, we do assume that the reference group is in .

We may find a formula for Var(é) via the Frisch-Waugh-Lovell theorem. By multiplying through (1) with Mrx and
using standard OLS assumptions, including the i.i.d. assumption Var(e) = o2/, we obtain

Var (9) = 02(D'MexD)™". ®)
That is, the bias term for 57 in (6) is
8o = a2tr((D'Mg xD)~'D'M1D)/n. (9)

It is the kg x kg matrix inside the trace term that may be too large to be handled directly, as in Andrews et al. (2008,
p. 687). By symmetry between 6 and yr, the corresponding bias term for 61/2, is

8y = o2tr((F*Mp xF)~'F'M1F)/n. (10)

For the covariance in (5), note the general algebraic formula for a quadratic form with A = Af, sometimes referred to
as a polarization identity, (x + y)!/A(x + y) = x!Ax + 2x'Ay + y'Ay. By taking expectations and using (7), we obtain

E(x!'Ay) = EXHAE(y) + tr(ACov(x, ). (11)
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We use (11) on (B), with x = Dé,y = FI/}, and A = M;. An algebraic excursion yields

0'D!MFy

2
E (doy) = + (ML D(O' My xD) ™ DMy Mo xF (F Mo xF) ™' F).

As in Andrews et al. (2008), we can use Lemma 2.2 to write Mpx = Myx(/ — D(D'MxD)~'D!My). We then obtain
Mg xMp xF = —Mg xD(D*MxD)~'D'MxF and rewrite the trace term as —tr(M1D(D*MxD)~' DMxF (F!Mp xF)~1Ft), or use
the transposed version as in Andrews et al. (2008, (22)), so that the covariance bias can be written as

2
o = — A M F(F Mo xF) ™ FIMD(O'MD) ™). (12)

Heteroscedastic and clustered residuals

If the residuals € do not satisfy Var(e) = o2/, our formulas will be different. The simplification leading to (8) is no
longer valid. Instead, we obtain

Var(é) — RV.R!,

where V. = Var(e) and R = (D'Mg xD)~'D'Mg x . This yields the following bias correction formulas:

8, = tr(MiDRV.R'D'M1)/n, (13)
81, = tr(M1FSVS'F'My)/n, (14)
84y = tr(MiDRVS'F'My)/n, (15)

where S = (FtMDny)_lFtMD,)(.
The simplest version of clustering is when there are n groups, one for each observation. This is the heteroscedasticity
assumption. That is, the residuals are independent, but with different variances. An estimate for V. is the diagonal
matrix with the squared residuals on the diagonal (White, 1980):

Vh=d ()3,

With fewer groups in the clustering, we describe them with a matrix C, which is the dummy encoding of the clustering
categorical variable. Following Cameron et al. (2011, (2.4)), we can use the estimate

Ve =d@cctd ).

We see that the heteroscedastic case corresponds to C = /. With multiway clustering, the alternating sum over
one-way clusters in the work of Cameron et al. (2011, (2.13)) can be used.
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Computing the trace

Computing the trace of a matrix is simple in theory, it is just to sum the diagonal elements. However, if the matrices
in (9), (10), and (12) are too large to be handled by commonly available computers, we need some other method.
Luckily, quantum physicists and others have studied such problems for quite some time. The following is one approach.
By using (7) with an x with E(x) = 0 and Var(x) = /, we obtain

tr(4) = E(x'Ax).

The right-hand side can be estimated by sample means. It was shown by Hutchinson (1989) that if we limit ourselves
to real vectors, that is, x € R™, the least variance in x!Ax with symmetric A is obtained by drawing x as sign vectors,
that is, uniformly in {—1, 1}'". This method is also described by Bai et al. (1996, Proposition 4.1), and, for complex
x € C™ by litaka & Ebisuzaki (2004).

That is, to compute the bias term 8, in (9), we estimate 02, and the expectation in
89 = a2E(X'M1D(D'Mr xD)~'D'M1x)/n, (16)
by sample means. This entails drawing an x € {—1, 1}", then solving the equation
D'Mg xDv = D'Mx, (17)

for v, and computing xtM1Dv. Solving (17) can be performed, for example, with a conjugate gradient method (CG) like
the one described by Kaasschieter (1988, Algorithm 3). The CG method has the advantage that it does not require a
matrix representation of the linear operator D!Mg xD; it is sufficient with a procedure for computing the matrix-vector
product, like the one in Remark 2.1.

The same method is used to compute the other bias terms. The bias term for 6@ is obtained from the bias term for
63 by interchanging F and D in (16):

S8y = 02E(M1F(F*Mp xF)~'F'M1x)/n. (18)
The bias term for 64y, becomes, from (12),
8oy = —02EX'M1F(F*Mp xF) ' F!MxD(D'MxD) ™' D'M1x)/n. (19)
Each sample in (19) requires two steps. We draw an x € {—1, 1} and solve
D'MyDv = D'Mx,

for v. Then we solve

FtMD’XFW = FtM1X,

for w. Finally, we compute w!FtMyDyv.

As usual, o2 can be estimated from the residuals ¢ when solving (1) by OLS. With the typically large number of
observations in these kind of models, the estimate 62 will be a very good estimate of 62. For the heteroscedastic and
cluster robust corrections in Section 4, the computations are similar, but note that the formulas for §;, and S(p are of
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the form E(x!Q!Qx), so rather than solving two large equations for each, we can get away with one, that is, compute
z = Qx and z!z. Indeed, if sampling of the traces in Section 4 is carried out simultaneously (with the same x) for the
three bias corrections, the vectors RID!M1x and StFtMyx from (13) and (14) can be reused in (15), so that no separate
CG iterations need to be run for 8(’”. This, of course, also holds for the i.i.d. expression 84, in Section 3 provided
those expressions are written symmetrically. However, such simultaneous sampling may introduce correlation between
the bias estimates.

Remark 5.1

The operators Mp, Me, M x, Mp x, and My are applied repeatedly in the CG iterations described earlier. The opera-
tors Mp and MF are just centring on the means, that is, subtraction of the group means. In general, by Remark 2.1,
given a vector A, MxA, Mr xA, and Mp xA can be computed by the methods of Gaure (2013b), but unless X contains
high-dimensional dummy-encoded factors or is otherwise too large, we can use Lemma 2.2 to write Mrx = MeMpuy,x
and Mpx = MpMu,x, that is, apply two simpler operators in succession. We can precompute MgX and MpX and
orthonormalize the columns; if the columns a; of a matrix A are orthonormal, then MyA is easy to compute:
Mud = A=) ";(A,a;)a;, where (-,-) is the Euclidean inner product. That is, applying Mr x, Mp x and My do not involve
the possibly costly iterations of Gaure (2013b). After orthonormalization, we may anyway use that algorithm; with
orthogonal columns, it will terminate after one iteration. A fast, but numerically unstable algorithm for orthonor-
malizing the columns of A, yielding a matrix B with the same range as A, is B = A(LY)~! where L is the Cholesky
decomposition of A'A = LLL. We clearly have R(A) = R(B), so that My = Mg, and it is readily seen that the columns
of B are orthonormal: BB = L71AIA(LY)™! = L7ILLY(LYH ™! = [. If AtA is close to singular, a more stable algorithm
should be used. However, in our setting, this happens only if MpX, MgX, or X is close to being column rank defi-
cient, which means that our original system in (1) is close to collinear. Respecifying the model is then probably
a better option.

6] Summary

Given the model (1) and OLS estimates 6, v/, and 62, an estimate pgy, for the correlation pgy, = cor(D6, Fyr) can be
found by computing the biased estimates 63,65/, and Gy as in (3), (4), and (5). We then estimate bias correction
terms (16), (18), and (19) with sample means as in Section 5, with uniformly drawn x € {—1, 1}":

89 = 62E(X'M1D(D'MexD)~' D'M1x)/n,
8y = 62RMyF(FMo xF) " FiM1x) /i, (20

S0y = —62B(CMLF(FtMpxF) ™ FtMxD(D'MyD) ™" D'Myx)/n,
where we use [ to denote a sample mean. The bias-corrected variances and covariance are

2 N
0 _891

D
I
Qv

6
A2 ~2 9
(Afgw 2591/,—59,/,.
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We then estimate the correlation pgy = cor(D8, Fyr) between D6 and Fyr as

Poy = b8y (6362)7""%.

For heteroscedastic and clustered residuals, estimated bias corrections 35,3;, and Séw can be found by using the
expressions in Section 4.

Appendix A: Some trial runs

The method for bias correction described earlier has been implemented with the tools available in the work of Gaure
(2013a). To illustrate that the method works in practice, in reasonable time, we present the result of some trial runs
of the algorithm described in Section 5.

A.1. Implementation

Application of the large matrices C,Ct,D,Dt, F, and Ft is simple in the software system R (R Core Team, 2014).
These sparse matrices are represented as factors and are applied by subsetting for C, D, and F and by the function
‘rowsum()’ for their transposes. Similar mechanisms for handling sparse matrices are often available in other software
systems. Efficient application of the matrix operators Mp, Mr, M x, Mp x, and My is described in Remark 5.1.

Because the expectations used to compute the bias corrections are estimated by sample means, they can be computed
to arbitrary precision by taking enough samples. We monitor the standard deviation of the sample mean and stop
sampling when a desired relative accuracy in 6; and 65, has been reached. We estimate 67 and 61/2, first, with a
relative tolerance. We stop sampling for §¢,, when a desired absolute accuracy in pgy has been reached.

The termination criterion for the CG algorithm is set so that the iterations finish when a solution good enough for
our expectation tolerance has been found. We use the termination criterion of Kaasschieter (1988). Computing a
too imprecise solution can introduce bias and also increase the variance in the expectation sampling, so that more
samples may be needed. The number of required CG iterations depends on the spectrum of A and is therefore data
dependent. In short, the tolerances we choose for the sample means and the CG iterations can have a substantial
impact on the timing, and the choice depends on what we intend to use the estimates for.

A.2. Datasets

Because datasets of such a large size typically are non-public for either commercial or data protection reasons, we
have created some datasets by randomly drawing observations. We have used the model

Vit = X1 + X2 + 0; + ¥ + €t (A.1)

where y; plays the role of time-constant firm effects and 6; plays the role of time-constant individual effects. The num-
ber of observations for each individual ranges uniformly from five to seven, and the observation period is exogenously
drawn. The initial size of the firms is drawn from a y2(kg/ky ) distribution to obtain a variation in firm size. The y;'s
and 6,'s are initially drawn from normal distributions with zero expectation and unit variance. Now and then, individ-
ual i ‘changes job’, in such a way that the probability of picking a firm j depends monotonically on |6; — v;|. Thus, we
create a correlation between D6 and Fv, where D and F are as before, dummy-encoded individuals and firms. When
we have drawn all job changes, that is, D and F have been constructed, we select the largest connected component,
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which in all cases consists of more than 99% of the data. Then, 6 and v are linearly scaled so that var(D6) = 8
and var(Fy) = 2. The covariate x; is drawn from a normal distribution, but with some correlation with 8 and .
Similarly with x,,

x1 ~N(0,1) +0.16; + 0.9y,

Xz ~ N(0,1) 4 0.2x; — 0.96; + 0.24);.

The residual e is drawn from a normal distribution A(0, 62).

Loosely speaking, the biases we are studying come from two sources. Andrews et al. (2008) suggest that the important
source for the correlation bias is /imited mobility, which they operationalize as nhumber of movers per firm. That is,
given a firm, how many of its employees have also worked for another firm in the observation period. Their specific
trials may suggest that the correlation bias is below 0.02 when the number of movers per firm exceeds ~15. However,
as they point out, there is also another source of bias, namely o2. This makes it hard to give general guidelines for the
size of the biases; they depend on both the mobility and the residual variance. We therefore make some datasets by
varying both the mobility and 2. Our mobility parameter is a hazard, that is, the probability per observation period
of changing a job. Our low-mobility datasets are described in Table A.1, where we report the sizes and the biased
variances and covariances together with the correlation bias. We have created four small datasets and two large ones.
The large ones are of the size studied by Card et al. (2013). The low-mobility datasets have 092 = 8,0@ = 2, and
ogy ~ 0.8; thus, pgy ~ 0.2. The mobility hazard is 0.0623 for the small datasets and 0.0447 for the two large ones.
The integers n, kg, and ky are in units of 10°. The column Sp is the correlation error pgy — pgy, due to the bias and
finite sample errors in the estimates 65, 5@, and 6gy,. Because of the data generation process, we do not manage to
keep the covariance oy, entirely constant over the datasets. The actual oy, is therefore also tabulated.

Table A.1. Description of low-mobility datasets.

Name n ko kg, 03 53 5‘3] 59]/, ﬁ@w gp 09y
11 60 10 1 0.1 8.034 2.020 0.782 0.194 0.006 0.800
12 60 10 1 1 8.352 2.207 0.615 0.143 0.059 0.806
13 60 10 1 8 10.811 3.595 -0.669 —-0.107 0.308 0.802
14 60 10 1 20 15.030 6.004 -2.887 —-0.304 0.505 0.804
15 1200 200 15 1 8.366 2.213 0.600 -0.139 0.061 0.800
16 1200 200 15 20 15.341 6.254 -3.216 -0.328 0.528 0.800

Table A.2. Description of high-mobility datasets.

Name  n ke  ky o2 53 5 Goy Poy 8p ooy

hl 60 10 1 0.1 8.018 2.007 0.831 0.207 0.002 0.836
h2 60 10 1 1 8.217 2.067 0.789 0.191 0.018 0.835
h3 60 10 1 8 9.677 2.513 0.459 0.093 0.116 0.834
h4 60 10 1 20 12.276 3.289 -0.101 -0.016 0.224 0.832

h5 1200 200 15 1 8.225 2.073 0.771 0.187 0.021 0.831
h6 1200 200 15 20 12.530 3.435 -0.360 —0.055 0.263 0.832
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Table A.3. Timing of low-mobility datasets.

Name 67 67 Goy Poy 8, K  Time
11 8.016 2.003 0.792 0.198 0.002 4 117
12 8.000 2.007 0.799 0.199 0.003 4 451
13 7.995 1.990 0.812 0.204 -0.004 4 794
14 8.005 2.004 0.793 0.198 0.003 4 923
15 7.999 2.002 0.800 0.200 0.000 1 4321
16 7.988 2.005 0.798 0.199 0.001 1 7940
Table A.4. Timing of high-mobility datasets.

Name &2 &2 Sow  Pov 8, K  Time
hl 8.000 2.003 0.834 0.208 0.001 4 74
h2 8.003 2.005 0.833 0.208 0.001 4 200
h3 7.968 2.004 0.837 0.209 -0.001 4 554
h4 8.002 2.027 0.845 0.210 -0.002 4 662
h5 7.999 2.002 0.829 0.207 0.001 1 2369
h6 8.005 1.995 0.832 0.208 0.000 1 4758

Our high-mobility datasets can be found in Table A.2. They have 092 =8, ai = 2, and ogy, ~ 0.83; thus, pgy ~ 0.208.
The mobility hazard is 0.175 for the small datasets and 0.113 for the two large ones.

A.3. Timing

The trials have been run on a Dell M520 sporting two octacore Intel Xeon E5-2470 CPUs running at 2.3 GHz, with
192 GiB of 1333 MHz DDR3 memory. Installed OS was Ubuntu Linux 14.04.1 LTS. R version 3.1.1 was used. The
computer was otherwise idle during the trial runs. We used a single CPU for our trials, that is, no parallelization.
Independent sampling is otherwise quite well suited for parallelization. For the bias corrections, we tried to ensure
a maximum relative error of 1% for the variances, and a maximum absolute error of 0.01 for the correlation, that
is, an absolute covariance tolerance of ~0.04. It turned out that very few samples needed to be taken for the trace
estimations. For the large datasets, 15, 16, hb, and h6, a single sample yielded more than enough precision. All our
estimates are well within the tolerance we have chosen. In Table A.3, we report the bias-corrected estimates together
with the number of samples (K) and elapsed time in seconds. The column <§p is the correlation error pgy, — pgy after
bias correction. Note that this is not the definitive word on how fast the method is, as implementation details also
matter, but it is an illustration that it runs in reasonable time for quite large datasets.

The timing of the high-mobility datasets can be found in Table A.4. We see that the bias corrections are generally
faster to perform for these datasets. This is due to fewer required CG iterations. The required number of CG iterations
depends on the spectrum of the operator. It is not surprising that the eigenvalues have a more amenable structure in
the better-identified high-mobility datasets.

Copyright © 2014 John Wiley & Sons, Ltd 388 Stat 2014; 3: 379-390



Stat Correlation bias correction

The ISI's Journal for the Rapid (wileyonlinelibrary.com) DOI: 10.1002/sta4.68
Dissemination of Statistics Research

References

Abowd, JM, Creecy, RH & Kramarz, F (2002), ‘Computing person and firm effects using linked longitudinal employer—
employee data’, Longitudinal Employer—-Household Dynamics Technical Papers 2002-06, Center for Economic
Studies, U.S. Census Bureau.

Abowd, JM, Kramarz, F & Margolis, DN (1999), ‘High wage workers and high wage firms’, Econometrica, 67(2),
251-333.

Andrews, M, Gill, L, Schank, T & Upward, R (2008), ‘High wage workers and low wage firms: negative assortative
matching or limited mobility bias?’ Journal of the Royal Statistical Society: Series A (Statistics in Society), 171(3),
673-697.

Bai, Z, Fahey, M & Golub, G (1996), ‘Some large-scale matrix computation problems’, Journal of Computation and
Applied Mathematics, 74, 71-89.

Bartolucci, C & Devicienti, F (2013), ‘Better workers move to better firms: a simple test to identify sorting’, IZA
Discussion Paper 7601, Bonn.

Cameron, AC, Gelbach, JB & Miller, DL (2011), ‘Robust inference with multiway clustering’, Journal of Business &
Economic Statistics, 29(2), 238-249.

Card, D, Heining, J & Kline, P (2013), ‘Workplace heterogeneity and the rise of West German wage inequality’, The
Quarterly Journal of Economics, 128(3), 967-1015.

Carneiro, A, Guimaraes, P & Portugal, P (2012), ‘Real wages and the business cycle: accounting for worker, firm and
job title heterogeneity’, American Economic Journal: Macroeconomics, 4(2), 133-152.

CorneliBen, T & Hubler, O (2011), ‘Unobserved individual and firm heterogeneity in wage and job-duration functions:
evidence from German linked employer—-employee data’, German Economic Review, 12(4), 469-489.

Davidson, C, Heyman, F, Matusz, S, Sjéholm, F & Zhu, SC (2010), ‘Globalization and imperfect labor market sorting’,
IFN Working Paper 856, Stockholm.

Gaure, S (2013a), Ife: linear group fixed effects. R package version 1.6.

Gaure, S (2013b), ‘OLS with multiple high dimensional category variables’, Computational Statistics & Data Analysis,
66, 8-18.

Graham, J, Li, S & Qiu, J (2012), ‘Managerial attributes and executive compensation’, Review of Financial Studies,
25(1), 144-186.

Hutchinson, M (1989), ‘A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines’,
Communications in Statistics—Simulation and Computation, 18(3), 1059-1076.

litaka, T & Ebisuzaki, T (2004), ‘Random phase vector for calculating the trace of a large matrix’, Physical Review E,
69, 057701.

Kaasschieter, E (1988), ‘A practical termination criterion for the conjugate gradient method’, BIT Numerical
Mathematics, 28(2), 308-322.

Mendes, R, Berg, G & Lindeboom, M (2010), ‘An empirical assessment of assortative matching in the labor market’,
Labour Economics, 17(6), 919-929.

QOuazad, A (2008), A2REG: stata module to estimate models with two fixed effects, Statistical Software Components,
Boston College Department of Economics.

Stat 2014; 3: 379-390 389 Copyright © 2014 John Wiley & Sons, Ltd



5. Gaure Stat

(wileyonlinelibrary.com) DOI: 10.1002/sta4.68 The ISI's Journal for the Rapid
Dissemination of Statistics Research

R Core Team (2014), R: a language and environment for statistical computing, R Foundation for Statistical Computing,
Vienna, Austria.

Schmieder, J (2009), GPREG: stata module to estimate regressions with two dimensional fixed effects, Statistical
Software Components, Boston College Department of Economics.

Sgrensen, T & Vejlin, R (2013), ‘The importance of worker, firm and match effects in the formation of wages’, Empirical
Economics, 45(1), 435-464.

White, H (1980), ‘A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity’,
Econometrica, 48(4), 817-838.

Copyright © 2014 John Wiley & Sons, Ltd 390 Stat 2014; 3: 379-390



	Correlation bias correction in two-way fixed-effects linear regression
	Introduction
	Preliminaries
	Variance and covariance bias
	Heteroscedastic and clustered residuals
	Computing the trace
	Summary


