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In this paper we extend fixed-b asymptotic theory to the nonparametric Phillips–
Perron (PP) unit root tests. We show that the fixed-b limits depend on nuisance
parameters in a complicated way. These nonpivotal limits provide an alternative
theoretical explanation for the well-known finite-sample problems of the PP tests.
We also show that the fixed-b limits depend on whether deterministic trends are
removed using one-step or two-step detrending approaches. This is in contrast to
the asymptotic equivalence of the one- and two-step approaches under a consis-
tency approximation for the long-run variance estimator. Based on these results we
introduce modified PP tests that allow for asymptotically pivotal fixed-b inference.
The theoretical analysis is cast in the framework of near-integrated processes, which
allows us to study the asymptotic behavior both under the unit root null hypothesis
and for local alternatives. The performance of the original and modified PP tests is
compared by means of local asymptotic power and a small finite-sample simulation
study.

1. INTRODUCTION

In this paper we extend the fixed-b asymptotic theory of Kiefer and Vogelsang
(2005) to the well-known unit root tests of Phillips and Perron (1988), i.e., the PP
tests. We focus on the case where the PP tests are constructed using nonparametric
kernel estimators of the long-run variance. We find that the fixed-b limits of the PP
tests are not pivotal and furthermore also depend on whether deterministic trends
are removed using one-step or two-step detrending methods. Our results are in
contrast to existing results based on consistency of the long-run variance estimator
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610 TIMOTHY J. VOGELSANG AND MARTIN WAGNER

in which case the asymptotic distributions of the PP tests are pivotal and are the
same for one- and two-step detrending for the deterministic polynomial trends
considered (see also Remark 1 in Section 2.3). Our finding of a nonpivotal fixed-b
limit provides an alternative explanation for the often inadequate finite-sample
performance of the PP tests (Perron and Ng, 1996; Schwert, 1989).

We propose a simple adjustment to the PP tests that provides a pivotal fixed-b
limit under the unit root null. The theoretical analysis is performed using the
framework of near-integrated process (cf. Phillips, 1987), which allows the deriva-
tion of limiting distributions both under the unit root null hypothesis and under
local alternatives (to study local asymptotic power).

The remainder of the paper is organized as follows. In the next section we
provide the fixed-b limits of the one- and two-step detrended versions of the
PP tests. In Section 3 we propose the adjustment that restores an asymptotically
pivotal fixed-b limit. Section 4 provides some limited finite-sample results and
Section 5 briefly summarizes and concludes. All proofs are relegated to the
Appendix. Additional material available upon request provides fixed-b critical
values for five kernel functions (Bartlett, Bohman, Daniell, Parzen, and quadratic
spectral (QS)), for the specifications without deterministic components, with in-
tercept only, and with intercept and linear trend. For the latter two specifications
of the deterministic component, critical values are available for both one- and
two-step detrending. MATLAB programs to compute the modified test statistics
and to perform inference using the fixed-b critical values are also available.

2. THE FIXED-b LIMITS OF THE PHILLIPS–PERRON TESTS

We assume that the data are generated according to

yt = D′
tθ + y0

t , t = 1, . . . ,T, (1)

y0
t =
(

1− c

T

)
y0

t−1 +ut , (2)

where, when deterministic components are included, Dt := [1, t, t2, . . . , tq ]′ for
some 0 ≤ q < ∞. When c = 0, y0

t is a unit root process, and values of c > 0
correspond to near-integrated (in the terminology of Phillips, 1987) stationary
(for fixed T ) alternatives.

The key assumption is that the process ut satisfies a functional central limit
theorem (FCLT), i.e., for T → ∞ it holds that

T −1/2
[rT ]

∑
t=1

ut ⇒ ωW (r), (3)

where [rT ] is the integer part of rT with r ∈ [0,1], ⇒ signifies weak convergence,
W (r) is a standard Wiener process, and 0 < ω2 < ∞ is the long-run variance of ut .
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FIXED-b PERSPECTIVE ON PP UNIT ROOT TESTS 611

Assuming for notational simplicity that ut is covariance stationary with summable
autocovariance function, with γj := E(ut ut− j ), we have

ω2 := γ0 +2
∞
∑
j=1

γj . (4)

As is common, we use σ 2 to denote γ0, and we furthermore define the half
long-run variance λ := 1

2

(
ω2 − σ 2

)
. In case ut is not assumed to be station-

ary, ω2 and σ 2 are defined as ω2 := limT →∞E
(

1
T

(
∑T

t=1 ut
)2) and σ 2 :=

limT →∞ 1
T ∑T

t=1E(u2
t ) with these limits assumed to exist; compare Phillips and

Perron (1988). Sufficient conditions for the FCLT (3) can be found in Phillips and
Solo (1992), or more specifically also in Phillips and Perron (1988) and in Sims,
Stock, and Watson (1990), who consider similar deterministic components as we
do. It is well known (see Phillips, 1987) that given (2) and (3) it follows that for
T → ∞

T −1/2 y0
[rT ] ⇒ ωVc (r) ,

where Vc (r) := ∫ r
0 e−c(r−s)dW (s).

Before we can turn to the analysis of the tests’ asymptotic behavior, we
need to define several additional quantities. Define D(r) := [1, . . . ,rq ]′ and the
correspondingly detrended process, Ṽc(r), and generalized Brownian bridge,
Ŵ (r), as

Ṽc(r) := Vc(r)− D(r)′
(∫ 1

0
D(s)D(s)′ds

)−1 ∫ 1

0
D(s)Vc(s)ds, (5)

Ŵ (r) := W (r)−
∫ r

0
D(s)′ds

(∫ 1

0
D(s)D(s)′ds

)−1 ∫ 1

0
D(s)dW (s). (6)

A slight variant of Ṽc(r) is also needed and is defined as

˜̇V c(r) := W (r)−
∫ r

0

(
Ḋ(s)+ cD(s)

)′
ds

(∫ 1

0
D(s)D(s)′ds

)−1∫ 1

0
D(s)Vc(s)ds,

where Ḋ(r) := ∂ D(r)/∂r = [0,1,2r, . . . ,qrq−1
]′. Note that

∫ r
0 Ḋ(s)ds =[

0,r,r2, . . . ,rq
]′ is simply D(r) with its first element replaced with 0. For the

pure unit root case, c = 0, because V0(r) = W (r), it follows that Ṽ0(r) and ˜̇V 0(r)
are similar but different stochastic processes. As we shall see subsequently, this
difference is the effect of using either one- or two-step detrending.

In the rest of the paper we will use throughout a subscript i = 1,2 to refer
to quantities related to either one- or two-step detrending, e.g., ỹt,1 refers to the
one-step detrended yt .
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612 TIMOTHY J. VOGELSANG AND MARTIN WAGNER

2.1. One-Step Approach

The one-step approach is based on estimating the regression model

yt = D′
tδ +αyt−1 +ut , t = 2, . . . ,T,

with the null hypothesis of interest being H0 : α = 1. Using the Frisch–Waugh
theorem, the deterministic components can be eliminated, and one can focus on
the regression

ỹt,1 = α ỹt−1,1 + ũt , t = 2, . . . ,T, (7)

with ỹt,1 := yt − D′
t

(
D′

T DT
)−1

D′
T YT , ỹt−1,1 := yt−1 − D′

t

(
D′

T DT
)−1

D′
T YT −1,

and ũt := ut − D′
t

(
D′

T DT
)−1

D′
T UT , using the notation YT := [y2, . . . , yT ]′,

YT −1 := [y1, . . . , yT −1]′, UT := [u2, . . . ,uT ]′, and DT := [D2, . . . , DT ]′.
The one-step PP unit root tests are based on the ordinary least squares (OLS)

estimator α̂1 := (∑T
t=2 ỹt,1 ỹt−1,1

)
/
(
∑T

t=2 ỹ2
t−1,1

)
of α from (7), respectively, the

t-statistic

tα1 := α̂1 −1√
σ̂ 2

1

(
∑T

t=2 ỹ2
t−1,1

) ,

with σ̂ 2
1 := 1

T ∑T
t=2 û2

t,1 and ût,1 := ỹt,1 − α̂1 ỹt−1,1. Furthermore, denote the

estimated long-run variance as ω̂2
1 := γ̂0,1 + 2∑T −2

j=1 k( j/M)γ̂j,1, with γ̂j,1 :=
1
T ∑T

t= j+2 ût,1ût− j,1. In addition to regularity conditions on ut , consistency of ω̂2
1

depends upon the kernel function k(·) and the rate of divergence of M such that
M → ∞ and M/T → 0 as T → ∞ (for a discussion, see Jansson, 2002).

The coefficient and t-statistic based one-step PP unit root tests are given by

Zα,1 := T (α̂1 −1)− 1

2

(
ω̂2

1 − σ̂ 2
1

)(
T −2

T

∑
t=2

ỹ2
t−1,1

)−1

, (8)

Zt,1 := σ̂1

ω̂1
tα1 − 1

2

(
ω̂2

1 − σ̂ 2
1

)(
ω̂2

1T −2
T

∑
t=2

ỹ2
t−1,1

)−1/2

. (9)

2.2. Two-Step Approach

The two-step detrending approach is very similar, yet there are some subtle dif-
ferences that will matter. The two-step approach is based on first detrending
the series yt to then estimate a regression similar to (7) using the detrended

data. Thus, we have ỹt,2 := yt − D′
t θ̂ , with θ̂ := (∑T

t=1 Dt D′
t

)−1
∑T

t=1 Dt yt and

ỹt−1,2 := yt−1 − D′
t−1θ̂ . Consequently the OLS estimator α̂2 of α used in this

approach is given by

α̂2 := ∑T
t=2 ỹt,2 ỹt−1,2

∑T
t=2 ỹ2

t−1,2

,
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FIXED-b PERSPECTIVE ON PP UNIT ROOT TESTS 613

and the corresponding two-step residuals, used to compute the two-step estimates
of σ 2 and ω2, are given by ût,2 := ỹt,2 − α̂2 ỹt−1,2.

The two-step PP tests, Zα,2 and Zt,2 say, are defined as before—with ỹt−1,2
and the two-step estimates α̂2, σ̂ 2

2 , and ω̂2
2 instead of the corresponding one-step

quantities—in (8) and (9).

2.3. Asymptotic Results

It is well known that for deterministic polynomial trends the asymptotic distribu-
tion of T (α̂−1) is the same for both the one-step and two-step approaches. Thus,
when one appeals to a consistency result for an estimator of ω2, the asymptotic
distributions of the PP tests are identical for the one- and two-step versions of the
tests, and it holds that

Zα,i ⇒ −c+
∫ 1

0 Ṽc(r)dW (r)∫ 1
0 Ṽc(r)2dr

, Zt,i ⇒ −c

√∫ 1

0
Ṽc(r)2dr +

∫ 1
0 Ṽc(r)dW (r)√∫ 1

0 Ṽc(r)2dr
,

for i = 1,2.

Remark 1. Further differences between one- and two-step detrending occur in
the case of more general deterministic components because then also the one- and
two-step limits of T (α̂−1) may differ. In particular, the numerator of the two-step
limit contains an additional term:

−
∫ 1

0
Ṽc(r)Ḋ(r)dr

(∫ 1

0
D(r)D(r)′dr

)−1 ∫ 1

0
D(r)Vc(r)dr,

with Ḋ(r) denoting the (corresponding quantity in more general cases) first dif-
ference of D(r) as defined before for the polynomial trend case. This term is,
clearly, not zero in general, but in the case of polynomial trends it holds that∫ 1

0 Ṽc(r)Ḋ(r)dr = 0, because in that case the span of Ḋ(r) is contained in the span
of D(r). For an example where this term is not zero, see Perron and Vogelsang
(1992), who include a mean shift dummy in the deterministic component.

The fact that these limiting distributions rely upon the consistency of ω̂2
i

implies that the asymptotic distributions do not capture the influence of the ran-
domness in ω̂2

i on the resulting test statistics. In particular, the choices with respect
to both the kernel function and the bandwidth are not reflected in the asymptotic
distribution, yet affect the finite-sample performance of ω̂2

i and thus of the PP test
statistics.

This limitation of conventional asymptotic theory is addressed with fixed-b the-
ory by means of deriving an asymptotic approximation for ω̂2

i under the assump-
tion that M = bT , where b ∈ (0,1] is held fixed as T → ∞. In practice for a given
sample with T observations and a given value of M , one would use the fixed-b
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614 TIMOTHY J. VOGELSANG AND MARTIN WAGNER

limit corresponding to the value of b = M/T . The fixed-b limit of ω̂2
i depends

on the asymptotic behavior of the scaled partial sums of ût,i , which is shown in
Lemma 1 to differ between the one- and two-step approaches. This in turn implies
that also the one- and two-step PP test statistics will have different limits when
using the fixed-b approximation.

LEMMA 1. Assume that the data are generated by (1) with the errors, ut , ful-
filling the FCLT (3). As T → ∞ it holds for 0 ≤ r ≤ 1 that

T −1/2
[rT ]

∑
t=2

ût,1 ⇒ ωH1,c(r),

H1,c(r) := Ŵ (r)−
(

ω2 ∫ 1
0 Ṽc(s)dW (s)+λ

ω2
∫ 1

0 Ṽc(s)2dr

)∫ r

0
Ṽc(s)ds, (10)

T −1/2
[rT ]

∑
t=2

ût,2 ⇒ ωH2,c(r),

H2,c(r) := ˜̇V c(r)−
(

ω2 ∫ 1
0 Ṽc(s)dW (s)+λ

ω2
∫ 1

0 Ṽc(s)2dr

)∫ r

0
Ṽc(s)ds. (11)

Lemma 1 shows that, in the limit, the scaled residual partial sums have leading
terms that differ between the two approaches. The leading terms reflect the im-
pact of the detrending method, and the second terms are identical, because they
essentially reflect the estimation of α, which is for the considered deterministic
components asymptotically equivalent in both cases.

Based on the preceding partial sum results, the fixed-b limits of ω̂2
i , i = 1,2,

can be expressed in terms of the processes H1,c(r) and H2,c(r). As is common in
fixed-b theory, the results depend upon b and the shape of the kernel function in
ways outlined in Definition 1.

DEFINITION 1. With H(r) denoting a scalar stochastic process define the
stochastic process P(b,k, H) as follows:

(i) If k′′(x) exists and is continuous, then

P(b,k, H) = − 1

b2

∫ 1

0

∫ 1

0
k′′
(

r − s

b

)
H(r)H(s)drds

+ 2

b
H(1)

∫ 1

0
k′
(

1− r

b

)
H(r)dr + H(1)2.

(ii) If k(x) is continuous, k(x) = 0 for |x | ≥ 1, and k(x) is twice continuously
differentiable everywhere except for possibly |x | = 1, then
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FIXED-b PERSPECTIVE ON PP UNIT ROOT TESTS 615

P(b,k, H) = − 1

b2

∫ ∫
|r−s|≤b

k′′
(

r − s

b

)
H(r)H(s)drds

+ 2

b
k′−(1)

∫ 1−b

0
H(r)H(r +b)dr

+ 2

b
H(1)

∫ 1

1−b
k′
(

1− r

b

)
H(r)dr + H(1)2,

with k′−(1) = limh→0(k(1)− k(1−h))/h.

(iii) If k(x) = 1−|x | for |x | ≤ 1 and k(x) = 0 otherwise, then

P(b,k, H) = 2

b

∫ 1

0
H(r)2dr − 2

b

∫ 1−b

0
H(r)H(r +b)dr

− 2

b
H(1)

∫ 1

1−b
H(r)dr + H(1)2.

Using the quantities just defined the following proposition gives the fixed-b
limits of ω̂2

i and of the PP tests for both the one- and two-step approaches.

PROPOSITION 1. Assume that the data are generated by (1) with the errors,
ut , fulfilling the FCLT (3). Furthermore assume that M = bT , with b ∈ (0,1]
fixed and the subscript i ∈ {1,2} refers again to the one- and two-step detrending
approaches. Then as T → ∞
ω̂2

i ⇒ ω2 P(b,k, Hi,c),

with P(b,k, H) as given in Definition 1 and

Zα,i ⇒ −c +
∫ 1

0 Ṽc(r)dW (r)+ 1
2

(
1− P(b,k, Hi,c)

)
∫ 1

0 Ṽc(r)2dr
,

Zt,i ⇒ −c

√ ∫ 1
0 Ṽc(r)2dr

P(b,k, Hi,c)
+
∫ 1

0 Ṽc(r)dW (r)+ 1
2

(
1− P(b,k, Hi,c)

)√
P(b,k, Hi,c)

∫ 1
0 Ṽc(r)2dr

.

The proposition shows that under fixed-b asymptotics the asymptotic null dis-
tributions of the PP tests exhibit certain distinct features. First, the limits are
nonpivotal given the dependence on σ 2 and ω2 via the dependence on Hi,c(r).
This asymptotic result indicates that the finite-sample performance of the PP tests
will be sensitive to the serial correlation structure in ut even for moderate to large
sample sizes, which matches the well-known finite-sample problems of the PP
statistics documented in the literature. Second, the fixed-b limits are different for
the one- and two-step approaches, with these differences occurring via ω̂2

i . Third,
as is common when using fixed-b asymptotics, the choices of bandwidth and ker-
nel are captured by the asymptotic approximation as reflected by P(b,k, Hi,c).
Notice that, when P(b,k, Hi,c) = 1, the standard PP asymptotic distributions are
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616 TIMOTHY J. VOGELSANG AND MARTIN WAGNER

FIGURE 1. Densities for Zt statistic, Bartlett kernel, two-step, intercept + trend, ρ = 0,
ϕ = 0. PP denotes the standard PP limiting density.

obtained, which is exactly as expected because using a consistent estimator of ω2

exactly coincides with P(b,k, Hi,c) = 1.
It is instructive to compare the fixed-b limiting distributions of the PP tests to

the standard limiting distribution of the PP tests. Figure 1a plots asymptotic densi-
ties for the Zt statistic using the Bartlett kernel in the intercept + trend model us-
ing two-step detrending for the case where there is no additional serial correlation
in the model (λ = 0). The densities were computed using simulation methods. The
simulations were performed using partial sums of 1,000 independent and identi-
cally distributed (i.i.d.) N (0,1) random errors to approximate the Wiener process
that drives the limits. The number of replications is 100,000. Asymptotic fixed-b
densities are given for b = 0.02,0.1,0.5 along with the standard PP asymptotic
density. When b = 0.02 there is a small difference between the standard PP limit
and the fixed-b limit. As b increases, there is a greater discrepancy between the
standard PP density and the fixed-b density. To gauge the relevance of these
asymptotic results for finite-samples, we simulate the finite-sample densities of
the PP statistic for the case of T = 200 using the following ARMA(1,1) model
for ut :

ut = ρut−1 + εt +ϕεt−1, (12)

where εt is a sequence of i.i.d. N (0,1) random variables for t = 0,1, ...,T and
u0 = 0. We again used 100,000 replications. Figure 1b plots finite-sample den-
sities for the case of ρ = 0, ϕ = 0 using the same values of b as in Figure 1a.
Also included in Figure 1b is the standard asymptotic PP density. When taken in
isolation, Figure 1b indicates two things. First, the finite-sample density of the Zt

statistic is sensitive to the bandwidth. Second, unless the bandwidth is small, the
standard asymptotic PP density is inadequate. If we compare Figures 1a and 1b,
we see that the asymptotic fixed-b densities capture the impact of the bandwidth
on the finite-sample behavior of Zt quite well.

Figure 2a plots the asymptotic fixed-b densities for the case of b = 0.02 but
where additional serial correlation is included in the model. We again use the
ARMA(1,1) specification for ut . As the ARMA(1,1) parameters change, we see
that the fixed-b densities move with them. This happens because the P(b,k, Hi,c)
process in the fixed-b limit changes as ρ and ϕ change. Figure 2b provides the
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FIXED-b PERSPECTIVE ON PP UNIT ROOT TESTS 617

FIGURE 2. Densities for Zα statistic, Bartlett kernel, two-step, intercept + trend, (ρ,ϕ)
pairs, b = 0.02. PP denotes the standard PP limiting density.

analogous finite-sample densities for the case of T = 200. We again see that the
patterns in the finite samples are captured by the fixed-b limits but not by the
standard PP limit.

Because the fixed-b limiting random variables capture much of the finite-
sample behavior of the long-run variance estimators used to construct the PP
statistics and because the fixed-b limits depend on the kernel, bandwidth, and
serial correlation nuisance parameters, the fixed-b theory provides a nice theoreti-
cal explanation for the sometimes poor finite-sample properties of the PP statistics
when the traditional PP asymptotic distribution is used to generate critical values.
Because the fixed-b limit is not pivotal, we cannot easily obtain critical values,
and this motivates a simple modification of the PP statistics that does deliver a
pivotal fixed-b limit result.

3. MODIFIED PP UNIT ROOT TESTS

The reason for the nonpivotal limits of the PP tests under fixed-b asymptotics
is that the scaled partial sums of the residuals ût,i are not, as has been shown
in Lemma 1, directly proportional to ω2, because of the dependencies in the
processes Hi,c. It is, however, straightforward to modify the residuals ût,i to ob-
tain the needed asymptotic proportionality for a pivotal fixed-b limit result. For
obtaining this result it is in fact sufficient to construct residuals using modified
estimators of α. Define the modified estimators as

α̂m
i := α̂i +

1
2 σ̂ 2

i

T −1 ∑T
t=2 ỹ2

t−1,i

,

for i ∈ {1,2}.
Using the preceding modification, the one-step modified residuals can be

written as

ûm
t,1 := ỹt,1 − α̂m

1 ỹt−1,1 = ỹt,1 −
(

α̂1 +
1
2 σ̂ 2

1

T −1 ∑T
t=2 ỹ2

t−1,1

)
ỹt−1,1

= ũt −
(

T −1 ∑T
t=2 ỹt−1,1ut + 1

2 σ̂ 2
1

T −2 ∑T
t=2 ỹ2

t−1,1

)
T −1 ỹt−1,1. (13)
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For the two-step approach the modified residuals can be written as

ûm
t,2 := ỹt,2 − α̂m

2 ỹt−1,2 = ỹt,2 −
(

α̂2 +
1
2 σ̂ 2

2

T −1 ∑T
t=2 ỹ2

t−1,2

)
ỹt−1,2

= ut − (Dt − Dt−1)
′(θ̂ − θ

)−(T −1 ∑T
t=2 ỹt−1,2ut + 1

2 σ̂ 2
2

T −2 ∑T
t=2 ỹ2

t−1,2

)
T −1 ỹt−1,2.

(14)

The following lemma gives the limit of the scaled partial sums of the modified
residuals.

LEMMA 2. Assume that the data are generated by (1) with the errors, ut ,
fulfilling the FCLT (3). Consider the modified residuals, ûm

t,i , as given by (13)
and (14) for the one- and two-step approaches. Then as T → ∞ it holds that

T −1/2
[rT ]

∑
t=2

ûm
t,1 ⇒ ωHm

1,c(r),

Hm
1,c(r) := Ŵ (r)−

(∫ 1
0 Ṽc(s)dW (s)+ 1

2∫ 1
0 Ṽc(s)2dr

)∫ r

0
Ṽc(s)ds, (15)

T −1/2
[rT ]

∑
t=2

ûm
t,2 ⇒ ωHm

2,c(r),

Hm
2,c(r) := ˜̇V c(r)−

(∫ 1
0 Ṽc(s)dW (s)+ 1

2∫ 1
0 Ṽc(s)2dr

)∫ r

0
Ṽc(s)ds. (16)

Thus, we see that the processes Hm
i,c(r) are free of nuisance parameters and

the limit of the scaled partial sums of the modified residuals is proportional to ω.
These results now form the basis for modified PP tests that employ estimators
of ω2 using the modified residuals rather than the original ones. We denote the
corresponding estimators of the long-run variance as ω̃2

i in what follows, and
using ω̃2

i instead of ω̂2
i defines the modified PP tests.

The following proposition provides the fixed-b limit distributions of the modi-
fied statistics.

PROPOSITION 2. Assume that the data are generated by (1) with the errors,
ut , fulfilling the FCLT (3). Furthermore assume that M = bT , with b ∈ (0,1]
fixed and the subscript i ∈ {1,2} refers again to the one- and two-step detrending
approaches. Then as T → ∞

ω̃2
i ⇒ ω2 P

(
b,k, Hm

i,c

)
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and

Zm
α,i ⇒ −c +

∫ 1
0 Ṽc(r)dW (r)+ 1

2

(
1− P

(
b,k, Hm

i,c

))
∫ 1

0 Ṽc(r)2dr
,

Zm
t,i ⇒ −c

√√√√ ∫ 1
0 Ṽc(r)2dr

P
(
b,k, Hm

i,c

) +
∫ 1

0 Ṽc(r)dW (r)+ 1
2

(
1− P

(
b,k, Hm

i,c

))√
P
(
b,k, Hm

i,c

)∫ 1
0 Ṽc(r)2dr

.

Because the processes Hm
i,c(r) do not depend upon nuisance parameters, the

processes P
(
b,k, Hm

i,c

)
are also free of nuisance parameters, which leads to piv-

otal fixed-b limiting distributions of the modified PP statistics. Thus, under the
null hypothesis of a unit root (c = 0), critical values can be simulated for given
deterministic components, b and kernel function. These are, as already mentioned
in the Introduction, available upon request for five kernels (Bartlett, Bohman,
Daniell, Parzen, and QS) for the specifications without deterministic component,
with intercept only, and with intercept and linear trend. For the latter two specifi-
cations of the deterministic component the fixed-b critical values differ between
one- and two-step detrending. The values for b in these tables range from 0.02
to 1 with a mesh of size 0.02.

For nonzero values of c we can use the results of Proposition 2 to compute local
asymptotic power (LAP) of the modified statistics. Because the limits in Propo-
sition 2 depend on the kernel, bandwidth, and form of detrending, we can use
LAP to make predictions about the impact of kernel, bandwidth, and detrending
choices on finite-sample power. We simulate LAP for the mentioned five kernels
and a selection of values of b using the same methods as used for Figures 1a and 2a
now using 5,000 replications. LAP is computed for a grid over c running from 0
to 80 with steps of size 2. Rejections are computed using the c = 0 asymptotic
critical value for a given kernel, bandwidth, detrending combination.

We report results for the Bartlett and QS kernels. The results for the other
kernels are qualitatively similar. We report results for the intercept + trend model.
Patterns are qualitatively similar for the intercept only model. Figures 3a and 3b
plot LAP for the Bartlett kernel, whereas Figures 4a and 4b plot LAP for the
QS kernel. The first notable pattern in these figures is the sensitivity of power to
the choice of b. In many cases power decreases as b increases, but in other cases
power is nonmonotonic in b. For example Zm

t using the QS kernel has good power
when b = 0.02, but power drops very quickly when b is increased to 0.1. Then, as
b is increased further, power increases but stays well below power when b = 0.02.
The second notable pattern is that, except for b = 0.02, there are clear differences
in power between the one- and two-step detrending approaches with the great-
est differences occurring for larger values of b. The third notable pattern is that
power is often very low, often close to zero, when b is not small and c takes on
small to medium values. The fourth notable pattern is that the kernel matters for
power unless b = 0.02, in which case power is similar for both kernels in all cases.
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620 TIMOTHY J. VOGELSANG AND MARTIN WAGNER

FIGURE 3. Local asymptotic power, Bartlett kernel, intercept + trend.

FIGURE 4. Local asymptotic power, QS kernel, intercept + trend.

Finally, there are substantial differences in power between the Zm
α and Zm

t statis-
tics except when b = 0.02. The local asymptotic power analysis suggests that
small bandwidths are much preferable to nonsmall bandwidths. For this reason
we report in Table 1 asymptotic fixed-b critical values of the modified statistics
for the case of b = 0.02 for the Bartlett and QS kernels.

4. FINITE-SAMPLE BEHAVIOR

For the sake of brevity we only include a small selection of finite-sample re-
sults obtained by performing extensive simulations. In particular we only report
some results for the sample size T = 200 for the Bartlett and QS kernels for
the t-statistic tests. Qualitatively similar results are available also for the coeffi-
cient tests and sample size T = 100. The number of replications is 5,000 for each
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TABLE 1. Critical values for the modified PP statistics Zm
α and Zm

t for b = 0.02

Dt Detr. Kernel Statistic 90% 95% 97.5% 99%

Intercept 1-step Bartlett Zm
α −10.617 −13.070 −15.526 −18.690

Zm
t −2.515 −2.780 −3.055 −3.334

QS Zm
α −10.492 −12.876 −15.268 −18.325

Zm
t −2.503 −2.786 −3.038 −3.318

2-step Bartlett Zm
α −10.660 −13.120 −15.593 −18.728

Zm
t −2.516 −2.780 −3.055 −3.331

QS Zm
α −10.541 −12.938 −15.317 −18.356

Zm
t −2.505 −2.787 −3.038 −3.315

Intercept + trend 1-step Bartlett Zm
α −16.723 −19.508 −22.082 −25.205

Zm
t −3.024 −3.280 −3.498 −3.757

QS Zm
α −16.346 −19.090 −21.541 −24.533

Zm
t −2.994 −3.248 −3.462 −3.720

2-step Bartlett Zm
α −16.874 −19.670 −22.259 −25.369

Zm
t −3.035 −3.292 −3.509 −3.769

QS Zm
α −16.545 −19.260 −21.734 −24.703

Zm
t −3.009 −3.261 −3.477 −3.734

experiment. The selected results, for a narrow set of statistics and nuisance param-
eters, are meant to be illustrative in capturing the main observations in relation to
the finite-sample predictions of the asymptotic theory. In particular, the fixed-b
theory suggests that under the unit root null hypothesis: (i) the traditional PP unit
root tests will be sensitive to nuisance parameters and the choice of kernel and
bandwidth, (ii) the modified PP tests will be more robust to nuisance parameters
and will be robust to the choice of kernel and bandwidth when the asymptotic
fixed-b critical values are used, and (iii) there can be a difference between the
one- and two-step detrending approaches.

The data generating process is given by (1) and (2) where we set θ = 0 without
loss of generality. We generate ut according to the ARMA(1,1) model given by
(12). The standard PP test uses the usual unit root asymptotic distribution critical
values and is labeled P P . The modified PP test, labeled P P( f b), uses the fixed-b
asymptotic critical values corresponding to the limits given in Proposition 2 for
c = 0.

In Figures 5–7 we display empirical null rejection probabilities at the 5%
nominal level. The results are reported for a grid of bandwidths given by M =
2,4,6, . . . ,198,200, indexed by the corresponding value of b = M/200, with
this grid corresponding to the grid for which fixed-b critical values have been
simulated. In each figure, the rejections are reported for both one- and two-step
detrending. Figures 5 and 6 give results for the case where ut has no serial cor-
relation (ρ = 0, ϕ = 0). Figures 5a and 6a give results for the intercept only case
and Figures 5b and 6b give results for the intercept + trend case. Several patterns
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622 TIMOTHY J. VOGELSANG AND MARTIN WAGNER

FIGURE 5. Empirical null rejections, Zm
t statistic, Bartlett kernel, ρ = 0, ϕ = 0, T = 200.

FIGURE 6. Empirical null rejections, Zm
t statistic, QS kernel, ρ = 0, ϕ = 0, T = 200.

stand out in the figures. The rejections of the P P( f b) tests are close to 0.05
regardless of the bandwidth, which indicates that the fixed-b critical values are
doing an adequate job of capturing the dependence of the finite-sample distribu-
tion on the bandwidth. In contrast, unless a small bandwidth is used, the P P tests
have rejections that are not close to 0.05, and the rejections show a sensitivity
to the bandwidth and to the kernel. This is consistent with the predictions of
Proposition 1. Comparing the one-step with the two-step approach, we see that
for the P P tests, there are stark differences in rejection probabilities between
the two approaches as predicted by Proposition 1. In contrast, the P P( f b) tests
have similar rejections for both one-step and two-step detrending, indicating that
the critical values based on the one- and two-step fixed-b limits correctly capture
the dependence upon detrending method.

Figures 7a and 7b give results for autoregressive and moving average errors
for the Bartlett kernel in the intercept + trend case. Results are similar for the
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FIGURE 7. Empirical null rejections, Zm
t statistic, Bartlett kernel, intercept + trend,

T = 200.

intercept only model and the QS kernel. Figure 7a has ρ = 0.4,ϕ = 0, and
Figure 7b has ρ = 0,ϕ = −0.4. Rejections of the P P statistics are systemati-
cally different from 0.05 regardless of the bandwidth. This is consistent with the
dependence on serial correlation nuisance parameters indicated by the fixed-b
limits of the P P tests. There is a noticeable difference between the one-step and
two-step approaches, especially in Figure 7a. The rejections of the P P statistics
are even more distorted in Figure 7b, with substantial overrejections possible for
some bandwidths. The rejections of the P P( f b) statistics are very different. In
Figure 7a rejections are close to 0.05 except when the bandwidth is small and
underrejections occur. In contrast, when ρ = 0,ϕ = −0.4, rejections are inflated
above 0.05 for the P P( f b) statistics but are not sensitive to the bandwidth. This
general tendency to overreject when there is a negative moving average compo-
nent is well documented in the literature; see Perron and Ng (1996). In unreported
simulations, we found that the overrejection problem becomes even more severe
for ϕ = −0.8, as one would expect.

We now turn to some limited finite-sample power results to assess the ade-
quacy of the LAP results for making predictions about the finite-sample power of
the P P( f b) statistics. We focus on the intercept + trend case given that results
are similar for the intercept only case. We use the same values of b as for the
LAP results. We only report results for ρ = 0, ϕ = 0 and power is size adjusted
in all cases. Figures 8a and 8b depict power of the Zm

α and Zm
t statistics with the

Bartlett kernel. Figures 9a and 9b give results for the QS kernel. The general
patterns in Figures 8 and 9 are similar to the LAP results. Power is highest for
b = 0.02, and power can be much lower for other values of b. There are notice-
able differences in power between the one- and two-step approaches, and there
are also clear differences in power between the Zm

α and Zm
t statistics. The one no-

table difference between the LAP power curves and finite-sample power curves
is that power with T = 200 is generally higher than what is predicted by the LAP
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624 TIMOTHY J. VOGELSANG AND MARTIN WAGNER

FIGURE 8. Finite-sample power (size adjusted), Bartlett kernel, Intercept + trend, ρ = 0,
ϕ = 0, T = 200.

FIGURE 9. Finite-sample power (size adjusted), QS kernel, intercept + trend, ρ = 0, ϕ = 0,
T = 200.

analysis. The values of α = 0.9,0.8,0.7,0.6 with T = 200 correspond to values
of c = 20,40,60,80. Comparing Figure 4b with Figure 9b, notice that power with
c = 40 is very low in Figure 4b (except for b = 0.02) whereas power with α = 0.8
is much higher in Figure 9b. Although the LAP analysis adequately captures the
general patterns of power with respect to dependency on bandwidth, model, one-
and two-step detrending, etc., the accuracy of the magnitudes of power predicted
by the LAP analysis is not so impressive.

Our final two figures compare finite-sample power of the P P and P P( f b)
statistics with several variants of the Perron and Ng (1996) modified statistics,
referred to as P N statistics. We include four variants of these statistics, two of
them based on nonparametric long-run variance estimation and two of them based
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FIGURE 10. Finite-sample power (size adjusted), one-step, T = 200; PP(b),PP(fb) are
Zt , Zm

t with Bartlett kernel and b = 0.02.

on estimating the long-run variance by fitting an autoregression. The nonparamet-
ric tests use the data dependent methods devised by Newey and West (1994) and
Andrews (1991), labeled P N − N W and P N − AN D. The two variants of au-
toregressive model–based modified test statistics follow either Said and Dickey
(1984) or Berk (1974) and are labeled P N − SD and P N − B E . The results
are given for the one-step approach and the t-statistic versions of the tests. The
P P and P P( f b) statistics use the Bartlett kernel with b = 0.02. We also im-
plement variants of the P P statistic using the two data dependent nonparametric
long-run variance estimation methods just mentioned to choose the bandwidths.
These statistics are denoted P P − N W and P P − AN D and for these and also for
P N − N W and P N − AN D the Bartlett kernel is used. Figure 10a gives results
for the intercept only case with ρ = 0, ϕ = 0 whereas Figure 10b gives results
for the intercept + trend case with ρ = 0.4, ϕ = 0. We see that the power of the
P P and P P( f b) statistics is similar whether P P uses b = 0.02 or a data depen-
dent bandwidth. The power of the nonparametric P N statistics is similar, but the
power of the two autoregression P N statistics tends to be lower. When a small
bandwidth is used, the P P( f b) statistics have power that is competitive with the
original P P tests and other more size-robust tests.

5. SUMMARY AND CONCLUSIONS

The fixed-b theory developed in this paper provides an alternative theoretical ex-
planation for the finite-sample dependence of the traditional PP unit root tests on
serial correlation in the errors driving the unit root. Unlike the traditional con-
sistency approximation for the long-run variance estimators used in the PP tests,
the fixed-b theory also indicates a finite-sample difference between one-step and
two-step detrending. Both local asymptotic power simulations and finite-sample
simulations show that there can be large differences between the one-step and
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two-step detrending approaches in terms of both null rejection probabilities and
power. We propose modified PP test statistics that have asymptotically pivotal
fixed-b limits. The fixed-b limits depend on the kernel and bandwidth used for the
long-run variance estimators, and the fixed-b limits are different for the one-step
and two-step approaches. In finite samples, the modified PP statistics, when used
with fixed-b critical values, have null rejections close to the nominal level unless
the serial correlation in the innovations to the unit root process behaves similarly
to an overdifferenced stationary process.

Although the modified PP tests are a clear improvement over the traditional
PP tests, further modifications would be necessary to make them reliable in prac-
tice in terms of adequate size control in the presence of a negative moving average
component. One approach that could be highly fruitful is to apply the wild boot-
strap with recoloring to the modified PP tests. A recent paper by Cavaliere and
Taylor (2009) has shown that size distortions of the traditional PP tests are sub-
stantially reduced when the wild bootstrap with recoloring is applied. See Table 3,
panel (a), of Cavaliere and Taylor (2009). An interesting topic for future research
is to study the behavior of a bootstrap version of the modified PP tests. A theoret-
ical analysis of this approach would require a unification and potential extensions
of bootstrap theory results given by Cavaliere and Taylor (2009) (unit root aspects
of the bootstrap) and bootstrap theory results given by Gonçalves and Vogelsang
(2011) (fixed-b aspects of the bootstrap).
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APPENDIX: Proofs

Proof of Lemma 1. For both methods of detrending, the residuals can be written as

ût,i = ỹt,i −α ỹt−1,i − T (α̂i −α)
ỹt−1

T
,

with differences occurring asymptotically only in the first part ỹt,i − α ỹt−1,i . We first
consider one-step detrending, in which case we obtain

ỹt,1 −α ỹt−1,1 = ũt = ut − D′
t (D′

T DT )−1 D′
T UT .

This implies that T −1/2 ∑[rT ]
t=2

(
ỹt,1 −α ỹt−1,1

) ⇒ ωŴ (r)dr . Under the assumptions

stated it is well known that T (α̂1 −α) ⇒
((

ω2 ∫ 1
0 Ṽc(s)dW (s)+λ

)/(
ω2 ∫ 1

0 Ṽc(s)2dr
))

and that T −3/2 ∑[rT ]
t=2 ỹt−1,1 ⇒ ω

∫ r
0 Ṽc(s)ds. Combining these three results estab-

lishes (10).
Let us now look at two-step detrending. In this case we can write

ỹt,2 −α ỹt−1,2 = yt − D′
t θ̂ −α

(
yt−1 − D′

t−1θ̂
)

= y0
t + D′

t θ − D′
t θ̂ −α

(
y0

t−1 + D′
t−1θ − D′

t−1θ̂
)

= y0
t −αy0

t−1 − D′
t
(
θ̂ − θ

)+αD′
t−1
(
θ̂ − θ

)
= ut − D′

t
(
θ̂ − θ

)+ (1− cT −1)D′
t−1
(
θ̂ − θ

)
= ut − (Dt − Dt−1)′

(
θ̂ − θ

)− cT −1 D′
t−1
(
θ̂ − θ

)
= ut − (Dt − Dt−1)′

(
D′

T DT
)−1 D′

T Y 0
T − cT −1 D′

t−1
(

D′
T DT

)−1 D′
T Y 0

T

with Y 0
T := [y0

2 , . . . , y0
T

]′. Defining G D := diag
(
1,T, . . . ,T q), straightforward calcula-

tions give the standard results

T −1/2G D
(

D′
T DT

)−1 D′
T Y 0

T =
(

T −1G−1
D D′

T DT G−1
D

)−1
T −3/2G−1

D D′
T Y 0

T

⇒ ω

(∫ 1

0
D(s)D(s)′ds

)−1 ∫ 1

0
D(s)Vc(s)ds

and

T −1
[rT ]

∑
t=2

D′
t−1G−1

D ⇒
∫ r

0
D(s)′ds.
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Less standard, but straightforward, is the result

[rT ]

∑
t=2

(Dt − Dt−1)′G−1
D ⇒

∫ r

0
Ḋ(s)′ds.

Using these limits and (3), it easily follows that T −1/2 ∑[rT ]
t=2 (ỹt,2 −α ỹt−1,2) ⇒ ω ˜̇V c(r).

Combining this result with the unchanged results (compared to the one-step detrending)
for the other two components establishes (11). n

Proof of Proposition 1. The results of the proposition follow from the asymptotic re-
sults for the partial sum processes of the residuals established in Lemma 1, using simi-
lar arguments as in Hashimzade and Vogelsang (2008). Once the fixed-b limits for ω̂2

i ,
i ∈ {1,2} are established, the fixed-b limit distributions of the test statistics follow from
using these when calculating the limiting distributions of the test statistics, as given in (8)
and (9), with these expressions referring to one-step detrending and the two-step detrending
versions of the test statistics similarly defined. n

Proof of Lemma 2. The proof of the lemma builds heavily on the proof of Lemma 1,
with in fact only the term comprising α̂m

i being different in the expressions for the modified
residuals compared to the residuals previously considered. For both detrending approaches
it holds that

T (α̂m
i −α) = T (α̂i −α)+

1
2 σ̂ 2

i

T −2 ∑T
t=2 ỹ2

t−1,i

⇒ ω2 ∫ 1
0 Ṽc(r)dW (r)+λ

ω2 ∫ 1
0 Ṽc(r)2dr

+
1
2σ 2

ω2 ∫ 1
0 Ṽc(r)2dr

=
∫ 1

0 Ṽc(r)dW (r)+ 1
2∫ 1

0 Ṽc(r)2dr
,

from which the results of the lemma follow, because all other terms are unchanged com-
pared to Lemma 1. n

Proof of Proposition 2. Using the result from Lemma 2 the limit of Z∗
α,i follows im-

mediately:

T (α̂m
i −1) = T (α̂m

i −α +α −1) = T (α̂m
i −α)+ T (α −1)

= T (α̂m
i −α)− c

⇒ −c +
∫ 1

0 Ṽc(r)dW (r)+ 1
2∫ 1

0 Ṽc(r)2dr
.

The other results follow, similar to the results of Proposition 1, from the asymptotic result
for the partial sum processes of the modified residuals established in Lemma 2 now using
the fixed-b limit for the modified long-run variance estimators ω̃2

i in place of ω̂2
i . n
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