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Abstract

Forest harvests are a possible source of second-generation wood-based bioen-

ergy. The carbon stored in the forest is highest when there is little or no har-

vest from the forest. Increasing the harvest from a forest, in order to produce

more bioenergy, may thus conflict with the direct benefit of the forest as a

carbon sink. We analyze this conflict using a simple model where bioenergy

and fossil energy are perfect substitutes. Our analysis shows how the so-

cial optimum will depend on the size of the climate cost, and how the social

optimum may be obtained by suitable taxes and subsidies.
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1 Introduction

An increasing concern for climate change has made many countries consider bio-
fuel and other forms of bioenergy as an important alternative to fossil energy.
However, concerns have been raised about the use of bioenergy, at least of first-
generation food-crop-based biofuels. The critique has partly been due to the up-
ward pressure such biofuel production has put on food prices (Chakravorty et al.
(2008), Bahel et al. (2013) and Hassler and Sinn (2012)). This type of biofuel has
also been criticized for the greenhouse gas emissions related to growing and pro-
cessing. Obvious sources of emissions from biofuel production include the use of
fertilizer when growing energy crops (Crutzen et al. (2008)), as well as the use of
fossil energy in the harvesting and processing of the crops (Macedo et al. (2008)).
A second problem with the production of bioenergy is that it may cause carbon
emissions due to direct and indirect land use changes (see e.g. Searchinger et al.
(2008), Berndes et al. (2010), Andrade de Sá et al. (2013)). This is true both for
conversion of grazing land and forest land to land for producing crops for bioen-
ergy. For both types of land the land conversion may give a loss of carbon stored
in the soil, and for forest land there may in addition be a loss of forest carbon
stocks.

An alternative to converting grazing land or forest land into land for growing
suitable crops for bioenergy production is to use the harvests from standing forests
to produce bioenergy. However, wood-based bioenergy from standing forests is
not unproblematic from a climatic point of view. The carbon stored in the forest
is highest when there is little or no harvest from the forest. Hence, increasing the
harvest from a forest in order to produce more bioenergy may conflict with the
direct benefit of the forest as a sink of carbon.

Wood-based bioenergy may take many forms, including e.g. raw firewood,
processed charcoals, and pellets. The possibility of producing liquid biofuel from
cellulosic biomass may also be a promising alternative to using food crops (Hill
et al. (2006)). The common denominator is that there is an underlying biological
process that will remove carbon from the atmosphere and store it in biological
materials. To analyze the climatic effects of wood-based bioenergy from standing
forests in more detail, we present a simple but general model of this biological
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process and the interactions between the gradual forest growth inducing depletion
of atmospheric carbon and the instantaneous emission from energy consumption.

We present our model in section 2. In this model bioenergy and fossil energy
are assumed perfect substitutes. The cost of producing fossil energy is assumed
increasing in cumulative extraction, so that in the long run fossil energy produc-
tion will tend to zero. In section 3 we derive the properties of the social optimum,
and show that there will exist a phase prior to the non-fossil era when bioenergy
and fossil energy will both be produced. Our analysis shows how the social opti-
mum will depend on the social cost of carbon; henceforth called the climate cost.
In particular, we show that the long-run carbon stock contained in the forest is
higher the higher is the climate cost. The long-run output level of bioenergy may
be either increasing or declining in the size of the climate cost, depending both on
the size of this cost and on the cost of producing bioenergy.

In section 4 we briefly describe the unregulated market economy, and show
how the equilibrium in such an economy differs from the social optimum. In sec-
tion 5 we show that the equilibrium of the market economy will coincide with the
social optimum if all carbon emissions to the atmosphere are taxed at a rate equal
to the size of the climate cost, and carbon sequestration through forest growth is
subsidized at the same rate. If policy is restricted to taxes on the two types of en-
ergy, the first-best may nevertheless be achieved in our simple model. The tax rate
on fossil energy should in this case be equal to the size of the climate cost, while
the tax rate on bioenergy will generally differ from the fossil energy tax rate. If
there is a binding political constraint on how high the tax on fossil energy can be,
this constraint may affect the (second-best) optimal tax on bioenergy. In many
recent papers exploring the interactions between renewable and non-renewable
energy sources (Hoel (2010), Grafton et al. (2012), Gronwald et al. (2013)), the
focus is primarily on how policy measures may affect the extraction path of the
non-renewable energy source. In this paper the focus is instead on the optimal
supply of bioenergy, and how to achieve this with policy measures.

3



2 The model

There are two types of energy: energy produced using fossil materials and en-
ergy produced with biological material from forests, denoted fossil energy and
bioenergy, respectively. The two energy types are perfect substitutes, but differ in
production costs and environmental impact. Fossil energy, Rt , is produced from a
non-renewable stock, St ≥ 0, such that the change in the resource stock is given
by the gross production,

Ṡt =−Rt . (1)

As the fossil energy source gets depleted it is necessary to utilize less acces-
sible sources, like deep water oil drilling, or use unconventional techniques, like
fracking. In a similar manner as Grafton et al. (2012) we let the technology con-
straint be captured in the stock dependent unit cost of extraction, increasing as the
stock gets depleted: c = c(St): c′(St) < 0 , c′′(St) > 0 and c(St)→ ∞ as St → 0.
The increasing extraction cost will be the binding constraint, and will reduce the
extraction rate to zero before the resource is completely exhausted.

Bioenergy production is modeled as harvest of available vegetation, which in
our case is assumed to be boreal forests or other relatively slow growing forests.
We will use a logistic growth model (Perman et al. (2003)), which gives a suitable
description of the growth of these types of crops. The volume of the forest at time
t is denoted Vt , and forest growth is given by the function f (Vt). This function
satisfies f ′(Vt)> 0 whenever V <VMSY , where VMSY is the maximum sustainable
yield, i.e. f ′(VMSY ) = 0 and f (VMSY ) = max( f (V )). For V > VMSY we assume
f ′(Vt) < 0. In both cases f ′′(Vt) < 0 for all Vt . In addition f (0) = f (Vmax) = 0,
which means that without harvest the forest volume will stabilize at the level Vmax,
corresponding to the maximum volume. One advantage with this type of function
is that it creates a capacity constraint on the bioenergy production, where VMSY is
the maximal possible production. Like Gronwald et al. (2013) we find this to be a
more realistic case than the using a typical non-constrained backstop technology.
However, the main advantage of using a general logistic growth model, is the
ability to capture the dynamics of the depletion of atmospheric carbon through
crop growth. A simple sketch of a possible growth function shown in Figure 1.

This simple representation of forest growth ignores the fact that forest growth
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Figure 1: Example of a general logistic growth model

may be faster the higher the content of CO2 in the atmosphere, see e.g. Huang et
al. (2007) . A brief discussion of this issue is given in the end of this section.

The change in the volume of the forests at time t is equal to the forest growth
minus the harvest Ht :

V̇t = f (Vt)−Ht , (2)

The cost of harvesting is given by the cost function b = b(Ht) : b′(Ht) >

0, b′′(Ht)≥ 0.
We disregard the (usually small) time lag between extraction/harvest and the

production of energy, and denote total energy production and consumption by
Et = Rt +Ht . This total energy production will equal the total gross emissions
from energy consumption with appropriate adjustment of the units. The net amount
of carbon released into the atmosphere equals these emissions minus the carbon
that is removed from the atmosphere due to the forest growth, f (Vt). Hence, at
time t, Et− f (Vt) is released to the atmosphere.

We follow the recommendations by David Archer (2005) when modeling at-
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mospheric carbon and its decay. He states that ”A better approximation of the
lifetime of fossil fuel CO2 for public discussion might be ”300 years, plus 25%
that lasts forever.” (Archer (2005)). We will capture this by dividing the atmo-
spheric carbon into two repositories, A1 and A2, as done by Farzin and Tahvonen
(1996). 75% of the emissions will go into A1, which has a corresponding deple-
tion rate α. The other 25% will end up in reservoir A2, which has no intrinsic
depletion rate. With total emissions given by Et , the atmospheric carbon changes
according to the equations below.

At = A1
t +A2

t where (3)

Ȧ1
t =

3
4
(Et− f (Vt))−αA1

t (4)

Ȧ2
t =

1
4
(Et− f (Vt)). (5)

The social benefit of energy consumption is given by the utility function B =

B(Et). We can interpret B(E) as a reduced form function giving utility as a func-
tion of fossil energy plus bioenergy when other energy (nuclear and renewable)
are optimally chosen, assuming these are either imperfect substitutes to E or have
increasing marginal costs of production. The utility function B(Et) satisfies the
conditions B′(Et) > 0 and B′′(Et) < 0. The environmental damage from atmo-
spheric carbon is assumed to be strictly increasing: D = D(At) : D′(At) > 0 and
D′′(At)≥ 0.

3 The social optimum

The net social welfare at time t is given by the benefits from energy consumption,
subtracted production costs and the damage of atmospheric carbon,

Ut = B(Et)− c(St)Rt−b(Ht)−D(At). (6)
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The social optimum is found by maximizing the discounted social welfare across
all time periods:

max
{Rt},{Ht}

∫
∞

0
Ute−ρtdt (7)

subject to (1)− (5).

where ρ is the discount rate.
Using standard optimal control theory, we construct the current value Hamil-

tonian and derive the corresponding necessary conditions for an interior optimum:

Ht =B(Et)− c(St)Rt−b(Ht)−D(At)+κt [−Rt ]+ (8)

ηt [ f (Vt)−Ht ]+υ
1
t [

3
4
(Rt +Ht− f (Vt))−αA1

t ] (9)

υ
2
t [

1
4
(Rt +Ht− f (Vt))],

∂H
∂Rt

=B′(Et)− c(St)−κt +υ
1
t

3
4
+υ

2
t

1
4
= 0

∂H
∂Ht

=B′(Et)−b′(Ht)−ηt +υ
1
t

3
4
+υ

2
t

1
4
= 0

The υ
j
t -values will always be negative as they represent the value of adding

more carbon into the atmosphere. The negative, weighted sum of the two υ
j
t

terms will represent the climate cost (often called the social cost of carbon). We
will denote this climate cost τt = −(3

4υ1
t +

1
4υ2

t ), giving a more compact version
of the first order conditions,

B′(Et) = c(St)+κt + τt (10)

B′(Et) = b′(Ht)+ηt + τt (11)

The first order conditions have a well-known economic interpretation: The marginal
benefit of increasing energy consumption must equal the marginal cost of increas-
ing production of any of the two energy types. The cost of fossil energy depends
on the real unit cost, c(St), the resource rent, κt , and the climate cost τt . The social
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cost of producing bioenergy depends on the real marginal cost, b′(Ht), the shadow
price of the standing forests, ηt , in addition to the climate cost τt . Since the two
energy types are perfect substitutes, their marginal benefits are equal. To ensure
efficiency, the volume consumed of each energy type must also be such that the
marginal costs are equal, described by c(St)+κt = b′(Ht)+ηt .

The time development of the system is governed by the equations of motion,
that is, the time development of the shadow prices:

κ̇t−ρκt = c′(St)Rt (12)

η̇t− (ρ− f ′(Vt))ηt =−τt f ′(Vt) (13)

υ̇1
t − (ρ+α)υ1

t = D′(At) (14)

υ̇2
t −ρυ

2
t = D′(At). (15)

The corresponding transversality conditions are necessary to ensure an internal
solution of the system,

lim
t→∞

e−ρt
κt = 0

lim
t→∞

e−ρt
ηt = 0

lim
t→∞

e−ρt
υ

j
t = 0.

Combining the equations above yields

τt =−(
3
4

υ
1
t +

1
4

υ
2
t ) =

∫
∞

0
(1+3e−αz)

1
4

e−ρzD′(At+z)dz (16)

κt =−
∫

∞

0
e−ρzc′(St+z)Rt+zdz. (17)

The climate cost (16) depends only on the marginal damage of carbon emis-
sions, which is positive by assumption. This leads to the conclusion that all car-
bon emitted into the atmosphere gives the same environmental costs, regardless of
whether the carbon source is fossil energy or bioenergy. The climate cost reflects
the damage today, as well as all future damages, of adding one more unit of car-
bon into the atmosphere. If one unit is emitted at time t, the immediate damage
is given by D′(At). If no more carbon is emitted in the future, the part stored in
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repository 2 will give a future discounted damage of 1
4e−ρzD′(At+z), for all future

times t+z. In repository 1, there is also a depletion rate, so the future damage will
be 3

4e−(ρ+α)zD′(At+z). Summing up the combined damage over all times t + z≥ t

yields the expression in equation (16).
The resource rent κt is a reflection of the added cost of producing fossil energy,

due to the scarcity of the resource. The immediate effect of extracting one unit
of fossil energy today is that the stock of fossil energy decreases. This will lead
to an increase in the unit cost of production and thus make all future extractions
more costly. The total effect of one unit extraction today is more complex, as
it depends on the entire extraction future path. The main effect is still that the
efficient marginal cost of extraction becomes higher than the real unit extraction
cost, when scarcity is taken into account.

It is not possible to obtain an analytical expression for ηt , as the effective
discount rate ρ− f ′(Vt) is not constant. But by studying (13) closer, it is still
possible to give this shadow price a meaningful interpretation. Keeping in mind
that ηt is the value of adding one more unit of standing forests, i.e. increasing Vt ,
one can divide η̇t into three terms to easier be able to identify the different effects
in play. The first term, ρηt , represents the necessary adjustment in ηt to account
for discounting. The second term, − f ′(Vt)ηt , takes into account that when the
growth rate changes due to present volume changes, this will influence the volume
in the subsequent periods. The last term, −τt f ′(Vt), includes the environmental
impact, which arises due to changes in the efficient depletion rate.

3.1 Steady-state solution

In order to simplify the dynamics of the solution, we make the assumption that
D′′ = 0, so that D′ is independent of A.1 In other words, the damage of adding one
more unit of atmospheric carbon is independent of the current level of carbon in
the atmosphere. It immediately follows from (16) that the climate cost takes the
form

τ =

[
3
4

1
ρ+α

+
1
4

1
ρ

]
D′, (18)

1This assumption is only important for the dynamics towards the steady state; in the steady
state D′ is constant even if D′′ > 0.
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and is constant for all times t. The climate cost depends on the social discount rate
ρ, the depletion rate α, and the damage of atmospheric carbon, D′. The first part

D′
ρ+α

accounts for the damage of adding one more unit of carbon into repository 1,

while D′
ρ

embodies the cost of adding carbon to repository 2. The weighted sum
of these costs reflects the fact that when you increase emissions by one unit, 75%
ends up in repository 1 and 25% ends up in repository 2, yielding a total cost of τ.

The steady-state solution is characterised by Ṡt = V̇t = Ȧ1
t = Ȧ2

t = κ̇t = η̇t = 0.
This removes all time-dependence, and we get the long-run or steady-state values
of the variables. The equation set describing the steady-state is given by:2

R∗ = 0 (19)

A1
∗ = 0 (20)

A2
∗ = A2

0 +
1
4
[(S0−S∗)+(V0−V∗)] (21)

A∗ = A2
∗ (22)

H∗ = f (V∗) (23)

B′(R∗+H∗) = c(S∗)+κ∗+ τ (24)

B′(R∗+H∗) = b′(H∗)+η∗+ τ (25)

ρκ∗ =−c′(S∗)R∗ (26)

(ρ− f ′(V∗))η∗ = f ′(V∗)τ, (27)

where ”∗” indicates a steady-state value and initial values are marked with ”0”.
The 9 equations (19)-(27) give the steady-state solutions for the 9 endogenous

variables S∗, R∗, V∗, H∗, A1
∗, A2

∗, A∗, κ∗ and η∗. These equations follow immedi-
ately from our dynamic equations, with the exception of (21), which is derived as

2The steady state described by (19)-(27) will only be reached asymptotically. To see this
assume that the steady state is reached at some finite date T . The dynamics of the system imply
that all variables remain constant from T and onwards. Moreover, the same dynamics imply that
all variables remain constant also when we move backwards in time from T . But this can only be
a solution to our equations if S0 = S∗ and V0 =V∗, i.e. if we already are at the steady state initially.
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follows:

A2
∗ = A2

0 +
∫

∞

0
Ȧ2

t dt

= A2
0 +

1
4

∫
∞

0
[Et− f (Vt)]dt

= A2
0 +

1
4

∫
∞

0

[
Rt +Ht− (V̇t +Ht)

]
dt

= A2
0−

1
4

∫
∞

0
(Ṡt +V̇t)dt

= A2
0 +

1
4
[(S0−S∗)+(V0−V∗)]

The interpretation of (21) is that in addition to the initial carbon in repository
2, 1/4 of the net emissions remain in the atmosphere for ever. Total emissions
from t = 0 to infinity are S0− S∗ from fossil energy extraction and V0−V∗ from
the change in carbon contained in the biomass. If V0−V∗ is less than zero, the net
”emissions” from the forests will be negative. This implies that the harvest has
been lower than the natural growth, which means that the production (or lack of
production) of bioenergy in itself has reduced the amount of atmospheric carbon.

The production of fossil energy will necessarily tend to zero in the long run
caused by the continued increase in production costs, as the resource gradually
gets depleted. The resource rent will then decrease to zero (as seen from (26)),
as the remaining stock of the fossil resource no longer has any value. Hence,
the total energy production in the long run will solely be given by the bioenergy
production, when the production of fossil energy ceases. Equation (23) shows that
the steady-state production of bioenergy will equal the long-term natural growth
of the forests. This means that for any positive volume V∗ (less than Vmax), it is
possible to have positive energy production in the long run.

Even though the production of fossil energy will tend asymptotically towards
zero, this is not the case for the stock of fossil energy, S. Since the extraction costs
tend to infinity as the stock gets depleted (c(S)→ ∞ as S→ 0), the steady state
level S∗ must be strictly positive, even without taking the environmental damage
into account. The steady state level of the stock will also be linked to the steady-
state bioenergy production, and thus the volume of standing forests. By combining
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(23) - (25) we see that the remaining stock of the fossil energy source will be
given by c(S∗) = b′(H∗) + η∗ = b′( f (V∗)) + η∗. That is, the marginal cost of
producing the last unit of fossil energy will equal the marginal cost of the steady
state production of bioenergy plus the shadow price of the standing forests.

There are several different possibilities for the steady state solutions for η∗ and
V∗, depending on the underlying assumptions and the specific functions involved.
This will be discussed in the next subsections.

3.2 The dynamics toward the steady state

This section gives a more detailed picture of the properties of the steady state and
the dynamics toward the steady state. To be able to discuss the dynamic properties,
we have made some simplifications. When the system has reached the steady
state, fossil energy production will be zero, so only the bioenergy production will
affect the marginal benefit B′. However, when discussing the saddle path, this will
generally not be the case. To be able to clearly display the interactions between
the shadow price and the forest volume, we will disregard the interaction with
fossil energy in the discussions below. The arguments will still be valid for any
constant level of fossil energy production. (In the end of section 3.3 we briefly
return to the consequences of a declining output of fossil energy.)

To construct a phase diagrams we need to find the conditions ensuring η̇ = 0
and V̇ = 0. Consider first the condition giving η̇ = 0. From the steady-state
equation (27) we have

η̇ = 0→ η =
τ f ′(V )

ρ− f ′(V )
for f ′(V ) 6= ρ (28)

As seen from this equation, η is not defined for ρ = f ′(V ), and we will denote
this limit volume V ρ. In the appendix we show that the curve giving η̇ = 0 is
discontinuous in V = V ρ, as the curve tends to +∞ when V approaches V ρ from
above and −∞ when V approaches V ρ from below. Moreover, for V > V ρ this
curve is downward sloping and cuts the horizontal axis at VMSY . For V < V ρ it
is shown that η is declining to the right of the η̇ = 0 curve, and increasing to the
left. The opposite holds for V >V ρ: η is declining to the left of the η̇ = 0 curve,
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and increasing to the right. These properties of the curve for η̇ = 0 are used in the
phase diagrams below.

Consider next the condition giving V̇ = 0. Combining the steady-state equa-
tion (27) with the first-order conditions (25) we have

V̇ = 0→ η = B′( f (V ))−b′( f (V ))− τ (29)

Since B and f are strictly concave and b is convex it is clear that this curve is
U-shaped with its minimum when f ′(V ) = 0, i.e. at VMSY . The minimum value
of η may be positive or negative depending on the size of τ. In both cases it is
shown in the appendix that V is declining for values of η below this curve, and
increasing for for values of η above this curve. These properties of the curve for
V̇ = 0 are used in the phase diagrams below.

3.3 Low-cost bioenergy

In this section we consider low-cost bioenergy. More precisely, we make the
following assumption:

B′( f (VMSY ))−b′( f (VMSY ))> 0 (30)

This means that in the absence of any fossil energy production and climate costs,
short-run maximization of U , implying B′(H)− b′(H) = 0, would given an un-
sustainable value of H (i.e. H > f (VMSY )). Hence, in this case the biological
dynamics of the forests (given by (2)) is a restriction that reduces social welfare in
the absence of climate costs, since optimal fossil energy production must approach
zero in the long run. As explained above, the minimum value of η in Figure 2 and
Figure 3 is given by η = B′( f (VMSY ))−b′( f (VMSY ))−τ. Due to assumption (30),
this minimum value of η is positive if τ is sufficiently small (Figure 2), but may
be negative if τ is sufficiently large (Figure 3).

We will start by looking at the case where the climate cost τ is ”low”, mean-
ing that B′ > b′+ τ for all volumes V (Figure 2). In this case it will be optimal
to choose a steady-state volume that ensures a high production volume of bioen-
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ergy. The highest possible steady state bioenergy production is obtained when
V =VMSY , but due to discounting, the steady-state volume will end up strictly less
than VMSY . If V0 <V∗ the value of standing forests starts at a higher level than the
marginal social profit (η0 > B′( f (V0))−b′( f (V0))−τ0). It will then be optimal to
harvest below the growth rate, as this will lead to an increase in both the volume
and the growth rate of the forests. Along the saddle path η is decreasing, and the
volume will continue to increase until the steady state is reached (asymptotically).
A similar argument can be used when V0 > V∗, but then we have the opposite
movements in the variables. In both cases, the closer the minimum point of the
V̇ = 0 curve is to zero, the closer the steady-state volume gets to VMSY . Thus with
a low climate cost η∗ will be positive, as the η̇ = 0 locus is above zero between
V ρ and VMSY .

A special case of a low climate cost is that τ = 0. This case of no climate cost
is of particular interest, as the unregulated market outcome in the absence of any
externality will coincide with the social optimum. The curve for V̇ = 0 will be as
drawn in Figure 2. When τ = 0 it is clear from (13) that η̇ = 0 only if η = 0 or
f ′(V ) = ρ (i.e. V =V ρ). Hence, the downward sloping curve for η̇ = 0 in Figure
2 takes the limiting upside-down T-shaped form as illustrated in Figure 4. In this
case the steady state value of V is V ρ.

Consider next the case for which the climate cost is so high that
B′( f (VMSY ))−b′( f (VMSY ))− τ < 0. In this case the minimum value of η is neg-
ative, as illustrated in Figure 3 3. The difference from the low-cost case is that
the higher climate cost makes it less profitable to produce bioenergy, and the sys-
tem is then pushed towards a higher steady-state volume than in the case of a low
climate cost. The steady-state volume will now be to the right of VMSY , and the
corresponding η∗ will be negative.4

Although the sign of η∗ is ambiguous, η∗+ τ will always be positive for a

3Assuming for now that there is only one equilibrium point in this case, even though it is
possible to get multiple equilibria if the V̇ = 0 curve cross the η̇ = 0 curve on the left hand side of
V ρ. Multiple equilibria are discussed in more detail in section 3.5.

4We disregard cases where τ is so large that the η̇ = 0 and V̇ = 0 do not intersect for an interior
value of V .
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Figure 2: Phase diagram for low cost bioenergy with a low climate cost.

positive climate cost. This follows from (27):

η∗+ τ =
τ f ′(V∗)

ρ− f ′(V∗)
+ τ =

ρ

ρ− f ′(V∗)
τ (31)

which is positive for all equilibria with τ > 0, since f ′(V∗)< ρ for τ > 0.
The formal analysis above was done assuming R = 0, which is unproblematic

with regards to the η̇ = 0 loci, as equation (28) is independent of the value of
R. However, the position of the curve for V̇ = 0, given by η = B′( f (V )+R)−
b′( f (V ))−τ, is lower the higher is R, since B′′ < 0. As R gradually declines as we
approach the steady state, this means that this curve is gradually moving upwards.
This will make the detailed dynamics of V and η slightly different than what we
have illustrated in Figure 2-4. In particular, the approach of η towards its steady
state value may no longer be monotonic. This may in turn have implications for
the detailed time path of the bioenergy production towards its steady-state value
f (V∗).
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Figure 3: Phase diagram for low cost bioenergy with a medium to high climate
cost.

3.4 High-cost bioenergy

Assume now that (30) doesn’t hold, that is, B′( f (VMSY ))−b′( f (VMSY ))≤ 0. This
means that in the absence of any fossil energy production and climate costs, short-
run maximization of U , implying B′(H)− b′(H) = 0, would give a sustainable
value of H (i.e. H ≤ f (VMSY )). In this case the minimum value of η is negative
for all τ≥ 0. Figure 3 is an example of this case for a τ > 0.

If cost of bioenergy production is sufficiently high, we could have B′(0)−
b′(0) ≤ 0, in which case the U-shaped curve for V̇ = 0 is below the horizontal
axis for all V ∈ [0,Vmax]. It is then optimal to have no bioenergy production even
if fossil energy production is zero, no matter what non-negative climate cost we
have. Whenever B′(0)− b′(0) > 0 and τ > 0 the U-shaped curve for V̇ = 0 will
intersect the η̇ = 0 locus for some V < Vmax. The long-run equilibrium will then
be characterized by VMSY < V∗ < Vmax and η∗ ≤ 0, for any strictly positive value
of τ. The limiting case of τ = 0 in discussed in section 4.
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Figure 4: Phase diagram for low cost bioenergy with no climate cost.

3.5 Multiple steady states

In the discussion above we assumed that there was only one steady-state equi-
librium. As Figure 5 reveals, however, there may be multiple steady-states. For
Figure 5 to be valid, we must either have a high climate cost, or a low climate
cost coupled with high-cost bioenergy. The figure clearly shows that there are
two stable steady-state equilibria, Vlow and Vhigh, and one unstable, Vmed , lying be-
tween the two stable equilibria. This means that there are two possible time paths
that solve the maximization problem (7). The low steady-state volume, Vlow, will
be realized if V0 < Vmed , that is, the initial volume is less than the volume corre-
sponding to the unstable equilibrium. If V0 >Vmed the steady-state volume will be
Vhigh.

When there is no climate cost, multiple equilibria can only arise if the cost of
producing bioenergy is high, i.e. B′( f (VMSY ))− b′( f (VMSY )) ≤ 0. This case is
shown in Figure 6. The two cases are very similar, the main difference being that
in the no externality case the steady state shadow price of the standing forests will
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never be negative.
Common for all stable steady-state equilibria is that the unregulated market

will always have a lower steady-state forest volume than what is socially optimal.

Figure 5: Phase diagram with multiple equilibria for high cost bioenergy and/or a
high climate cost.
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Figure 6: Phase diagram with multiple equilibria for high cost bioenergy with no
climate cost.

3.6 Effects of a higher climate cost

To see how the steady-state values depend on the size of the climate cost, we
differentiate the equations (19)-(27) with respect to τ. In the appendix we derive
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the following results:

dV∗
dτ

=
ρ

K
> 0 (32)

dS∗
dτ

=
1
−c′′K

[
K−ρB′′ f ′

]
> 0 (33)

dA∗
dτ

= −
(

dV∗
dτ

+
dS∗
dτ

)
< 0 (34)

(35)
dH∗
dτ

= f ′(V∗)
dV∗
dτ

>

<
0 depending on V∗

<

>
VMSY (36)

(37)
dη∗
dτ

=
1
K

[
(B′′−b′′)( f ′)2 +(η∗+ τ) f ′′

]
< 0 (38)

d(η∗+ τ)

dτ
=

ρ

K
(B′′−b′′) f ′

<

>
0 depending on V∗

<

>
VMSY (39)

K = (B′′−b′′) f ′(ρ− f ′)− (η∗+ τ) f ′′ > 0 (40)

Notice that V∗ is unambiguously increasing with increased τ. For low-cost
bioenergy, this implies that as τ increases from 0 to B′( f (VMSY ))− b′( f (VMSY )),
the steady state bioenergy production H∗ increases. However, as τ increases fur-
ther, f ′ becomes negative, so H∗ declines with a rising τ. This implies that a higher
climate cost will only result in a higher steady-state level of bioenergy production
if the steady-state volume is sufficiently low, that is, below VMSY .

Since V∗>VMSY for high-cost bioenergy, it follows from (36) that for high-cost
bioenergy a higher climate cost will unambiguously give lower long-run bioen-
ergy production.

A higher climate cost will give a larger amount of carbon in the forest and also
a larger stock of unextracted fossil fuel. Hence, the long-run stock of carbon in
the atmosphere is lower the higher is the climate cost.
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3.7 Forest growth and the atmospheric content of CO2

As mentioned previously (in section 2), forest growth may depend positively on
the content of carbon in the atmosphere (Huang et al. (2007)). To find the con-
sequence of this on our results we can replace the growth function f (V ) with the
more general function F(V,A), with the properties of FV = ∂F/∂V being as before
and with FA = ∂F/∂A > 0. In the appendix it is shown that not much is changed
be redoing the analysis with the function f (V ) replaced by F(V,A). One change
of some importance is that the size of the climate cost will be reduced by this
change. Instead of (18) the climate cost will now be given by

τ = k
[

3
4

1
ρ+α

+
1
4

1
ρ

]
D′

where k will be smaller than one if FA > 0. Moreover, k, and hence τ, will be
lower the larger is FA. The interpretation of this is obvious: If emissions of carbon
to the atmosphere immediately increase forest growth and hence absorb some of
the carbon emissions, the climate damage of the carbon emissions will be reduced.
However, based on the findings in van der Sleen (2015), which showed that the
increase in CO2 has not stimulated growth of tropical trees, we assume omitting
this effect will not notably change the conclusions.

4 The unregulated market

The market outcome maximizes consumer plus producer surplus, in the absence
of externalities and regulations. This means that the market outcome is identical to
what the social optimum would be without any environmental costs. The steady-
state properties of this outcome were illustrated by Figure 4 for the case of low-
cost bioenergy and by Figure 6 for the case of high-cost bioenergy. We have shown
that for both cases the socially optimal steady-state volume of the forests is higher
the higher is the climate cost. It follows that the steady-state volume of the forests
in an unregulated market is lower than what is socially optimal in the presence of
climate costs. For the case of high-cost bioenergy (implying V∗ > VMSY for all τ

and hence H∗ lower the higher is V∗), this implies that the steady-state bioenergy
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production in an unregulated market is higher than what is socially optimal in the
presence of climate costs. For low-cost bioenergy the reverse may be true, that
is, the bioenergy production in an unregulated market may be lower than what is
socially optimal.

Even if the socially optimal long-run bioenergy production may be lower
than the long-run bioenergy production in an unregulated market, the relationship
could be the opposite in the short run. This is illustrated in Figure 7. The time
paths for the unregulated marked (correponding to zero climate cost) and social
optimum (positive climate cost) are denoted by UM and SO, respectively. Since
the UM-curve lies above the SO-curve in the long run, we must have V∗ >VMSY ,
as illustrated in Figure 3. Before fossil fuels are depleted, bioenergy production
is determined by (11), i.e. B′(Rt +Ht)− b′(Ht) = ηt + τ. The climate cost will
reduce Rt in the short run compared with the unregulated market. From the equa-
tion above we therefore see that the direct effect of increasing τ is to reduce Ht ,
but that the indirect effect through reduced Rt is to increase Ht . If this indirect
effect dominates the direct effect, the socially optimal bioenergy production will
be higher in the near term than in the unregulated market, as illustrated in Figure
7.

A complete analysis of the effects of increasing the climate cost τ connected to
both fossil energy and bioenergy prior to the steady state, is beyond the scope of
the present analysis. However, to demonstrate that the case illustrated in Figure 7
at least is possible, consider the following example: Let demand be very inelastic
(i.e. B′′ large), implying that any increase in the climate cost will only give a small
increase in V∗ and a small reduction in H∗. If this increase gives a substantial
reduction in Rt at early dates (Rt would in fact drop to zero if the increase in the
climate cost was large enough), it follows that Ht must increase at these dates
(since the change in Rt +Ht must be small for all dates). This will hence give a
situation as described in Figure 7.
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Figure 7: Sketch of possible time paths of the socially optimal bioenergy produc-
tion (SO) and the production provided by the unregulated market (UM)
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5 Policy options

5.1 Tax on carbon emissions

As usual, the social optimum may be achieved by setting a Pigovian tax on net
carbon emissions to the atmosphere. This tax should be equal to the climate cost
given by (16), and should be applied both to the emissions from fossil energy
use and to net emissions from using bioenergy (gross emissions minus growth of
the forests). With such a tax scheme the market outcome will coincide with the
solution to the problem described by (7), with a slightly modified ”utility function”
given by:

Umarket
t = B(Ht +Rt)− c(St)Rt−b(Ht)Ht− τt(Rt−V̇t) (41)

where τt is given by (16). It is straightforward to verify that the solution to this
problem is given by (10)-(13).

5.2 Differentiated tax on energy consumption

If the government lacks detailed and verifiable information about the forest growth
at the micro level, it will not be possible to reach the first-best solution using only
a tax on net carbon emission.5 Another policy option can be to impose a tax or
subsidy on the different energy types. As shown below, this policy option will
also reproduce the first-best solution.

The government’s problem can be constructed as a Stackelberg game, where
the government is the leader and announces the tax paths that it will commit to.
The producers are the followers, and will maximize profits taking the announced
tax plans as given. The idea behind this game is that the government can calcu-
late how the producers will respond to the different tax paths, and based on this,
choose the tax paths yielding the highest net social benefits. The government’s

5Even without detailed and verifiable information about volumes and growth at the micro level
(i.e. level of the individual forest owner), the regulator may have reasonably good data of volumes
and growth at the aggregate level.

24



control variables are the tax paths, while the producers’ control variables are the
production of fossil energy and bioenergy as before.

In the present model the solution to the government’s optimization problem
is in principle simple: The first-best social optimum is achieved if fossil energy
consumption is taxed the rate τt given by (16) and bioenergy consumption is taxed
at the rate τt +ηt , where ηt is given by the social optimum. With these taxes the
market outcome solves the following problem:

max
{Rt},{Ht}

∫
∞

0
[B(Rt +Ht)− c(St)Rt−b(Ht)− τtRt− (τt +ηt)Ht ]e−ρtdt (42)

subject to (1) and (2).

Notice that in this case ηt is exogenously given to the market participants, chosen
by the regulator to be equal to the equilibrium value from the social optimum.

The determination of Rt is given by the same equations as in the social opti-
mum. Moreover, at each t the value of Ht that maximizes the square brackets in
(42) is given by (11). We know that this time path of Ht satisfies the constraint (2),
which hence is redundant in the optimization problem above. The social optimum
therefore solves the optimization problem above.

Under the assumption that climate damages are linear with respect to the car-
bon in the atmosphere, the optimal tax on fossil energy (τ) is constant. The optimal
tax on bioenergy (τ+ηt) will generally vary over time. The long-run value of this
tax is always positive (see eq. (31)), and may be higher (Figure 2; η∗> 0) or lower
(Figure 3; η∗ < 0) than the tax on fossil energy. As explained in the end of section
3, the time path of the difference between these tax rates may be non-monotonic.

The motivation for setting a tax on the energy consumption instead of targeting
carbon emission and mitigation was information and verification problems with
regards to measuring forest volumes and growth at the micro level. Unfortunately,
the government will meet information problems when taxing energy consumption
as well. This analysis relied on the assumption that the government was informed
about the market response functions, given implicitly by (10) and (11). This is
clearly a very strong assumption, and in real life there is no reason to believe
that the government would know the exact function forms of the market response
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functions. One can therefore not expect the implemented policies to fully replicate
the social optimum.

The reason why we in principle can achieve the first-best social optimum with-
out directly observing the forest growth at the micro level is that in our model this
growth only depends on the bioenergy production. In reality, forest owners may
be able to influence net carbon emissions also via other channels, e.g. through
type of forest and by the way the forests are managed. A tax only on energy con-
sumption will in this case generally not make the market outcome coincide with
the social optimum.

5.3 A constraint on the tax on fossil energy

So far, we have assumed that the use of fossil energy is always taxed at the op-
timal rate τ, given by (16). Various political constraints could imply that the
actual tax rate in reality is set below τ, say at τ0 < τ. The social optimization
problem given in section 3 would then have to be modified, with the govern-
ment now choosing H(t) taking the market determination of R(t) with the tax τ0

as a constraint. This dynamic second-best optimization problem is considerably
more complicated than the problem given by (7) in section 3. However, with our
assumption that D′ and hence τ is constant, the steady-state properties for the op-
timal policy towards H(t) are unaffected, since R(t) = 0 in this steady state. As
before, the optimal policy will be to tax net emissions from the forests at the rate
τ, i.e. to tax the use of bioenergy at the rate τ and to subsidize forest growth with
the same rate (as in eq. (41)).

If as argued in the previous subsection it is impossible to subsidize forest
growth, the optimal steady-state tax on the use bioenergy will as before be given
by τ+η∗, which is positive (from (31)). If τ0 is sufficiently small, we therefore
must have τ+η∗ > τ0, implying that the optimal tax on the use of bioenergy is
higher than the exogenous tax rate on fossil energy. (There may of course be po-
litical constraint also on the tax on bioenergy, so that the actual tax will be below
the optimal rate.). For larger values of τ0 we may have τ+η∗ < τ0 since η∗ < 0 if
τ is sufficiently large. In this case the optimal tax on the use of bioenergy is lower
than the exogenous tax on the use of fossil energy.
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If we instead had assumed that D′′ > 0 the long-run consequence of taxing
fossil energy at a less than optimal rate will be slightly different. The long-run
contribution of carbon in the atmosphere from burning fossil energy, i.e. S0−S∗,
will be determined by (24) with τ replaced by τ0, implying that S0−S∗ is higher
the lower is τ0. With D′′ > 0 it follows from (18) that the long-run climate cost τ

will be higher the lower is τ0. If subsidizing forest growth is ruled out, the optimal
tax on tax on bioenergy will as before be equal to τ+η∗. However, with D′′ > 0
this tax will depend on τ0, since τ is higher the lower is τ0. It follows from (39)
that τ+η∗ will be higher the lower is τ0 if V∗ > V MSY , while the opposite will
be true if V∗ < V MSY . The former case is perhaps most likely, as the climate cost
τ typically will be high in the long run if D′′ > 0 and fossil energy is taxed at a
low rate, and a high value of τ will imply that the optimal forest volume is large.
In any case, it follows from (32) that the long-run volume of the forests should
be higher the less fossil energy is taxed, as lower taxation of fossil energy gives a
larger climate cost when D′′ > 0.

6 Conclusions

As mentioned in the Introduction, wood-based bioenergy from standing forests
is not unproblematic from a climatic point of view: Increasing the harvest from
a forest in order to produce more bioenergy may conflict with the direct benefit
of the forest as a sink of carbon. We have shown that the optimal volume of the
standing forests is higher the higher is the climate cost. For a sufficiently high
climate cost, this implies that bioenergy production from forest harvest should be
lower the higher is the climate cost, while the opposite may hold for low levels of
the climate cost combined with low cost of producing bioenergy.

Even if long-run bioenergy production is lower the higher is the social cost
of carbon, the relationship may be reversed in the short run. The reason for this
is that in the short run (while low-cost fossil energy resources are still large), an
increased climate cost will give reduced production of fossil energy. This in turn
will increase the marginal utility of bioenergy, and this effect may be so strong
that it is optimal to increase the production of bioenergy.

The social optimum may in principle be obtained in a market economy with
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the correct use of instruments correction for the carbon externalities. The first-best
policy is to tax all energy use (fossil and biological) at the same rate per unit gross
carbon emissions, and subsidize forest growth (measured in carbon) at the same
rate. If this common tax/subsidy rate is set equal to the climate cost, the social
optimum is achieved.

In reality, the government will not have detailed and verifiable information
about the forest growth at the micro level. It will therefore not be possible to reach
the first-best solution using only a tax on net carbon emission. We showed that
in our model it is nevertheless possible to achieve the social optimum by suitable
taxes/subsidies on the different energy types. Fossil energy should be taxed at a
rate equal to the social cost of carbon, while the tax on bioenergy will generally
be different. The latter tax should always be positive, but should be lower than the
tax on fossil energy provided the climate cost is sufficiently high.

Finally, we considered the possibility of the tax on fossil energy for political
reasons being set lower than the climate cost. In this case the optimal tax on the
use of bioenergy may be higher than the exogenous tax on the use of fossil energy,
even for high values of the climate cost.
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Appendix

Properties of the phase diagrams

Consider first the curve for η̇ = 0, i.e. (28). As explained in section 3.2, η is
not defined for V = V ρ, where V ρ is defined by ρ = f ′(V ρ). Looking at the
derivative of the η̇ = 0 curve we find ∂

∂V (
τ f ′(V )

ρ− f ′(V )) = ( ρτ

(ρ− f ′)2 ) f ′′(V ) < 0 since
f ′′(V ) < 0; hence the η̇ = 0 locus is a decreasing function of V . For V < V ρ we
have η < 0, since f ′(V ) > 0 for V < V ρ. For V ρ < V < VMSY we have η > 0,
since 0 < f ′(V )< ρ for these values of V . Finally, for V >VMSY we have η < 0,
as f ′(V ) < 0 for V > VMSY . The curve giving η̇ = 0 is thus discontinuous in
V = V ρ, as the curve tends to +∞ when approaching V ρ from above and −∞

when approaching from below. Moreover, for V > V ρ this curve is is downward
sloping and cuts the horizontal axis at VMSY .

Equation (13) may be rewritten as η̇= ρη− f ′(V )(τ+η). In the region V <V ρ

we have f ′(V )> ρ> 0, η< 0 and (η+τ)< 0 along the η̇ = 0 curve. Increasing V

marginally, while holding η constant then yields: ∂η̇

∂V =− f ′′(V )(τ+η)< 0. This
implies that η is declining to the right of the η̇ = 0 curve, and increasing to the
left, for all volumes less than V ρ. For volumes between V ρ and VMSY we have:
0 < f ′(V )< ρ and η < 0 along the η̇ = 0 curve. In this area − f ′′(V )(τ+η)> 0,
which means that η is increasing to the right of the η̇= 0 locus. The last region we
need to examine is V >VMSY , where f ′(V )< 0, η < 0 and consequently (τ+η)>

0. From this we see that − f ′′(V )(τ+η)> 0, also in this region.
Next, consider the curve for V̇ = 0. The bioenergy cost function is by assump-

tion monotonically increasing in bioenergy production, that is, b′ > 0 for all levels
of H. The bioenergy production is uniquely determined by the steady state vol-
ume, H = f (V ). Since b′′ ≥ 0 and B′′ < 0, the slope ∂

∂V (B
′( f (V ))− b′( f (V ))−

τ)= (B′′−b′′) f ′(V ) will always have the opposite sign of f ′(V ), and the minimum
value of η will coincide with the maximum of f (V ) at VMSY .

To find in what regions the volume grows and declines, it is useful to start with
the first order condition determining the bioenergy production, B′(H) = b′(H)+

η+ τ. Rewriting the first order condition gives H = H(η+ τ), where H ′ < 0 due
to B′′ < 0 and b′′ > 0. Using this equation in the growth equation for the volume

29



yields V̇ = f (V )−H(η+ τ). Starting from the V̇ = 0 curve and increasing η

marginally will lead to a decrease in the bioenergy production and thus an increase
in the growth rate of the crops. Thus V is increasing above the V̇ = 0 locus, and
decreasing below.

Steady-state effects of increasing the climate cost

Differentiating (25) and (27) with respect to τ (after inserting R∗ = 0 and H∗ =

f (V∗)) gives (
(B′′−b′′) f ′ −1
−(η∗+ τ) f ′′ (ρ− f ′)

)(
dV∗
dτ

dη∗
dτ

)
=

(
1
f ′

)
implying (32) and (38), where

K = (B′′−b′′) f ′(ρ− f ′)− (η∗+ τ) f ′′ (43)

To find the sign of K, consider the steepness of the curves for η̇ = 0 and V̇ = 0.
These follow from (28) and (29):(

∂η

∂V

)
η̇=0

=
ρτ

(ρ− f ′)2 f ′′(
∂η

∂V

)
V̇=0

= (B′′−b′′) f ′

In a saddlepoint equilibrium the curve for V̇ = 0 must be steeper (including the
sign) than the curve for η̇ = 0. From the equations above this implies that

(B′′−b′′) f ′− ρτ

(ρ− f ′)2 f ′′ > 0 (44)

Inserting (44) into the expression (40) for K gives

K = (B′′−b′′) f ′(ρ− f ′)− τρ

ρ− f ′(V∗)
f ′′

= (ρ− f ′)
[
(B′′−b′′) f ′− ρτ

(ρ− f ′)2 f ′′
]
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From (44) we know that the term in square brackets is positive. Moreover, for
τ > 0 we have ρ− f ′(V∗)> 0. Hence, K > 0.

The steady-state value S∗ is determined by c′(S∗) = b′( f (V́∗)+η∗, implying

dS∗
dτ

=
1
c′′

[
b′′ f ′

dV∗
dτ

+
dη∗
dτ

]
Both terms in square brackets are negative for f ′ < 0, implying that dS∗

dτ
> 0 for

this case (recalling that c′′> 0). For the case of f ′(V∗)> 0 (i.e. low-cost bioenergy
with a not too high climate cost) we insert (32) and (38) into the expressions above
and rearrange. This gives (33), with the sign following from K > 0 and B′′ f ′ < 0.

The expression (39) follows directly from (38).

Forest growth depends on atmospheric concentration of carbon

In equations (1)− (5) we now have F(Vt ,At) instead of f (Vt). The Hamiltonian
(8) is replaced by

Ht =B(Et)− c(St)Rt−b(Ht)−D(At)+κt [−Rt ]+

ηt [F(Vt ,A1
t +A2

t )−Ht ]+υ
1
t [

3
4
(Rt +Ht−F(Vt ,A1

t +A2
t ))−αA1

t ] (45)

υ
2
t [

1
4
(Rt +Ht−F(Vt ,A1

t +A2
t ))],

The first-order conditions (10) and (11) will be the same as before, but the equa-
tions for the time development of the shadow prices are now changed to (using
subscripts for partial derivatives of F):

κ̇t−ρκt = c′(St)Rt (46)

η̇t− (ρ−FV (Vt ,At))ηt =−τtFV (Vt ,At) (47)

υ̇1
t − (ρ+α)υ1

t = D′(At)−ηtFA(Vt ,At)− τtFA(Vt ,At) (48)

υ̇2
t −ρυ

2
t = D′(At)−ηtFA(Vt ,At)− τtFA(Vt ,At) (49)
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Solving for the steady state, we find as before that

η∗ =
FV

ρ−FV

From the definition of τ it follows from the equations above that

τ =

[
3
4

1
ρ+α

+
1
4

1
ρ

](
D′−η∗FA− τFA

)
(50)

or, more compactly
τ = h

(
D′−η∗FA− τFA

)
where h equals the term in square brackets in (50). Inserting for η∗ and rearrang-
ing gives [

1+
hρFA

ρ−FV

]
τ = hD′

which may be written as

τ = k
[

3
4

1
ρ+α

+
1
4

1
ρ

]
D′

where k =
[
1+ hρFA

ρ−FV

]−1
< 1 for FA > 0 since the steady-state value of FV is

smaller than ρ.
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