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Abstract in Norwegian: 

CREE - Working Paper 11/2019 
Er det mulig med en karbonfri europeisk elektrisitetssektor? 
Simen Gaure and Rolf Golombek 
 
For å oppnå en samlet utslippsreduksjon i drivhusgasser på minst 80 prosent innen 2050, sikter 
EU mot å redusere utslippene i kraftsektoren med 95 prosent. Ved bruk av detaljerte værdata 
med timesoppløsning for perioden 2005-16 viser vi at EU kan designe en kraftsektor der vind 
og solkraft har en markedsandel på 98 prosent. Dette krever imidlertid omfattende lagring av 
elektrisitet; i den mest krevende timen må en energimengde som svarer til 5 prosent av 
årskonsumet av elektrisitet i Europa, lagres.   



1 
 

 

 

TRUE OR NOT TRUE:  

CARBON-FREE ELECTRICITY GENERATION IS 
POSSIBLE1 

 

Simen Gaure and Rolf Golombek 

Frisch Centre 

     December 10, 2019 

 

ABSTRACT 

A key component in the transition to a low-emission society is radical emissions reductions in 
the electricity generation sector. The EU, for example, aims at reducing emissions from 
electricity plants by 95 percent as part of their goal of lowering total GHG emissions by at least 
80 percent by 2050. Using re-analysis data for the period 2005-16 and simulations, we  show 
how the EU can design an electricity generation sector where around 98 percent of total 
production is generated by wind power and solar. In our reference case, a large amount of 
batteries must be installed to make the system work. In the most demand hour in the period 
2006-15, an amount of electricity corresponding to 5 percent of average annual consumption of 
electricity has to be stored in the batteries. Average annual use of batteries corresponds to 15 
percent of average annual consumption of electricity. 
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Introduction 

Signatories to the Paris Agreement aim to keep the rise in global average temperature well 

below 2 degrees Celsius above pre-industrial levels. A key component in the transition to a low-

emission society is a radical emissions reduction in the electricity generation sector. The EU, 

for example, aims at reducing emissions from electricity plants by 95 percent as part of their 

goal of lowering total GHG emissions by at least 80 percent by 2050. This paper examines how 

the EU can reach the emissions target for the electricity generation sector.    

 

Which electricity technologies are available to meet the EU policy goal of a 95 percent 

emissions reduction? Obviously, conventional fossil-fuel technologies have to be phased out as 

these generate the problem. Conventional fossil-fuel based technologies coupled with Carbon 

Capture and Storage (CCS) might have a potential, but de facto no European country plan to 

invest in these technologies due to, for example, high costs or extensive resistance to store 

carbon below the ground. Nuclear, which has a substantial market share in Europe (around 25 

percent), will hardly be expanded; some countries plan to phase out nuclear, whereas others 

may replace existing capacity with new capacity – overall nuclear capacity in the EU might 

decrease over time. There is a potential for expansion of hydroelectricity (in 2015 its market 

share was around 10 percent), but national plans clearly suggest limited potential. Also bio 

power has a potential for expansion, but the increase may be moderate because land used for 

growing inputs to bio electricity has alternative use. In addition, the standard assumption that 

bio power is carbon free has clearly been questioned, see, for example, Searchinger et al. (2017). 

Hence, in the future electricity production in the EU must mainly come from other technologies, 

which means wind power and solar.  

A key characteristic of wind and solar power is intermittency; the level of production cannot be 

controlled; it is determined by installed capacity and the weather conditions (wind speed or 

solar irradiance). This is in stark contrast to fuel-based power plants. Due to the intermittency 

of wind and solar, there will in general be a mismatch between production from these sources 

and consumption. Intermittent production will fluctuate much more than consumption, and the 

“average” daily path of production may also differ from the standard consumption profile over 

the day. Therefore, it might be socially desirable to link production from intermittent power 

stations to a storage technology, thereby ensuring that production in each point in time matches 

the load.  
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The purpose of the present study is to examine whether it is possible to design an electricity 

generation sector in Europe that is carbon free. To make the problem as tough as possible, in 

most of the discussion we neglect existing electricity capacities; some of these, in particular, 

reservoir hydro and nuclear, will make the EU goal of a 95 percent emissions reduction easier 

to accomplish. In Section 5, we discuss, however, how non-intermittent technologies may be 

helpful in achieving the EU emission target. Thus, below we mainly study the design of an 

electricity generation sector consisting of wind power, solar power and a storage technology, 

here batteries, for Europe. However, if necessary for making the system work, we allow for 

investment in a back-up technology that can rapidly change its production over the day.  

There is a growing literature on whether it is possible to transform the electricity sector, and 

even the whole energy system, into one without any, or only tiny, emissions. Some examples 

are Breyer et al. (2017), Elliston et al. (2012), Elliston et al. (2014), Koskinen and Breyer 

(2016), Mai et al. (2014), Rasmussen et al. (2012), Salomon et al. (2018) and Sgouridis et al. 

(2016).  

Using hourly data for 2014, Sinn (2017) studies the limits of Germany’s energy revolution, that 

is, to phase out nuclear and fossil-fuel based electricity, allowing for investment in wind power, 

solar power, hydroelectricity, and international grid expansion as well as demand management. 

With trade and investment in five European countries, the aggregate electricity market share of 

wind and solar in these countries is around 50 percent. In contrast to Sinn, we allow for 

investment in batteries, but in our reference case there is only one back-up technology in 

addition to wind power and solar. Moreover, we study 23 European countries without trade as 

well as a fully integrated European electricity market. For the latter case, the market share of 

wind and solar is 98 percent. This solution requires, however, massive investment in batteries: 

average annual use of batteries corresponds to 15 percent of average annual consumption of 

electricity in these 23 countries.  

Jacobsen et al. (2015) argues that it is possible to electrify all US energy sectors without any 

use of natural gas, biofuels, nuclear power and stationary batteries. The resulting social cost of 

a 2050-55 US energy system based entirely on wind, water and solar, is, according to this study, 

lower than the cost of a fossil-fuel based system. A key characteristic of the proposed energy 

system is storage of heat in soil and extensive use of hydroelectricity and hydrogen.  

Clack et al. (2017) dispute the main finding in Jacobsen et al. (2015), namely that it is possible 

to design a US energy system based entirely on electricity and hydrogen as energy carriers. 
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They argue that the Jacobsen et al. study has significant short-comings, for example, invalid 

modeling tools, modeling errors and that it relies on implausible assumptions. They advise 

policy makers to treat studies proposing energy systems that relies almost exclusively on wind, 

solar and hydroelectricity with much caution. 

In contrast to Jacobsen et al. (2015), who uses a 3D climate/weather model to predict wind and 

solar output (for the US for the period 2050-55), we simulate the dispatch from wind and solar 

power using re-analysis data for the observed period 2006-15 with hourly resolution. Our 

analysis is restricted to the electricity sector, whereas the Jacobson study covers the entire 

energy system. Both studies restrict attention to wind, water and solar technologies, but the 

Jacobson study has a wider portfolio of technologies; we mainly focus on onshore wind, 

offshore wind and solar, but also discuss the role of reservoir hydro in the concluding remarks. 

Like Jacobson et al. (2015), we conclude that a wind-water-solar based system is feasible, but 

in contrast to the Jacobson study, this is not a low-cost system due to heavy investment in 

batteries. 

 

2  Data 

To simulate production from wind and solar, we need data on weather conditions. Instead of 

estimating how the future weather will turn out, we use data on observed weather to simulate 

the dispatch from wind and solar power.  

From MERRA-2 (The Modern-Era Retrospective analysis for Research and Applications, 

version 2), see Gelaro et. al (2017), we have access to hourly weather observations for the 

period 2006-2015 for each of 23 European countries, with a latitude-longitude grid of cells of 

0.5° × 0.625°. Roughly, each cell is 50 km by 50 km of size. The region for offshore wind 

power is defined as 12 nautical miles from the coastal line of a country (contiguous zone). In 

total, we have 2703 (onshore and offshore) cells.  

Because wind and sun conditions differ between cells within a country, we mainly focus on the 

10 percent best cells within each country; this rule is applied for each of the three renewable 

electricity technologies covered in the present study; onshore wind, offshore wind, and solar. It 

seems reasonable that development of renewable electricity mainly will take place in these 

areas.   
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Wind speed data is used to estimate wind power production 100 meter above the ground, both 

for onshore and offshore wind power. We use standard assumptions about the power curve – 

the relationship between wind speed and wind energy: below a cut off (3.5 m/s), wind speed is 

too low to generate wind power. Above this cut off, there is a steep (cubic) relationship between 

wind speed and wind energy, but this relationship levels off as wind speed approaches 14 m/s. 

If wind speed is even higher, there will be no change in wind energy, but above 25 m/s, the 

wind mill will stop production in order to avoid technical damages.  

We use Merra-2 data for wind speed at 50 meter above the ground, and the surface roughness 

coefficient, to estimate wind speed 100 meter above the ground, see Ruedas et al. (2011) for 

the methodology. Generated wind energy depends on wind speed 100 meter above the ground, 

the power curve and the Merra-2 variable air density, see the Appendix for documentation. If 

wind conditions are optimal in the course of one hour, that is, if wind speed is always between 

14 and 25 m/s, 1 MW installed wind power capacity will generate 1 MWh wind energy. We 

use the same power curve for onshore wind and offshore wind. 

Surface incoming shortwave ground flux (SWGDN) data is used to estimate solar power 

production. We distinguish between direct and indirect radiation to tilted solar panels, and take 

albedo (diffuse reflection) also into account. Whereas Merra-2 had detailed information on 

direct radiation and albedo, we had to estimate diffuse radiation, see the Appendix.  As part of 

the calculations, we find optimal (fixed) tilting across the high resolution grid in each of the 23 

European countries for solar farms. If solar conditions are optimal, that is, if solar radiation is 

measured at noon on vernal equinox or autumnal equinox, at equator, and there are no clouds, 

then 1 MW solar capacity will, in the course of one hour, generate 1 MWh solar energy.  

Because we are interested in the mismatch between intermittent production and consumption, 

we need data also for the load. From ENTSO-E and NORDPOOL we have hourly data on 

national consumption for each of 23 European countries for the period 2006-15. 

 

3 Simulations 

Because the production path of intermittent electricity will never match the load profile, we 

want to design the electricity generation system so that the mismatch is minimized. Let i
ty  be 

production (in a country) from technology i, i =offshore wind power, onshore wind power, 

solar, in period t. Production depends on this technology’s share ( )iα  of total intermittent 
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capacity ( )K , as well as the productivity of this technology in period t, i
tβ  (measured in MWh 

per MW installed capacity), where  0 1.i
tβ≤ ≤  Hence, i i

t ty Kβ α=  where 1.i

i
α =∑  Because 

we consider wind and solar power in the 10 percent best cells of each technology (in a country), 

and we assume that total capacity of a technology ( i Kα ) is distributed evenly between these 

10 percent best cells, i
tβ  reflects  average productivity of the 10 percent best cells of technology 

i in time period t (in a country).  

Let tx  be consumption of electricity in period t (in a country), and let i
t t t

i
z y x= −∑ , that is, the 

difference between total production of intermittent electricity and consumption, henceforth 

referred to as excess electricity in period t. Our concern for the mismatch between production 

and consumption of electricity suggests to choose total intermittent capacity ( )K  and 

technology shares ( )iα  so as to minimize the (hourly) variance of excess electricity over the 

period 2006-15. To make the problem interesting, we have to impose a restriction on how much 

electricity to produce. In our reference case, we impose that for the period 2006-15, total 

production from the three renewable technologies has to be equal to (observed) total 

consumption (in a country). We solve the constrained minimization problem for each of the 23 

European countries, as well as for a constructed “country” that covers the area of these 23 

countries, henceforth referred to as EU-23.FB (First Best). Also for EU-23.FB, we consider the 

10 percent best cells for each technology.  

The optimal technology shares are shown in Figure 1. For most countries, the technology share 

of solar is around 40 percent. For countries with a coast line, the technology share of offshore 

wind power varies between 15 percent and 60 percent. The bar termed EU-23.m shows the 

unweighted average (Mean) of the technology shares of the 23 countries. As seen from the 

Figure, the technology shares for solar, onshore wind and offshore wind is around 40 percent, 

40 percent and 20 percent, respectively.  

Once we have derived the optimal technology shares and total renewable capacity of a country, 

we can use the weather data to simulate production from each technology, and thus calculate 

excess electricity production in each hour. We then calculate accumulated excess electricity 

production for a country, see Figure 2 for Italy. In hours with positive excess production, the 

graph is increasing, whereas the graph is decreasing in hours with negative excess production. 

For hours with positive accumulated excess electricity, the graph is above the horizontal axis, 
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whereas the opposite is the case for hours with negative accumulated excess electricity. As seen 

from Figure 2, in the last hour accumulated excess electricity is zero, which simply reflects our 

restriction that over the period 2006-15, total intermittent production should be equal to total 

consumption.  

Because a feasible electricity system requires equality of production and consumption in each 

point in time (here hour), we need to extend the electricity system with a storage technology, 

here batteries. We impose the following simple battery strategy:  

i) If excess production is positive in an hour, load the battery 

ii) If excess production is negative in an hour, discharge the battery provided there is 

stored electricity in the battery 

iii) If excess production is negative in an hour, but there is no stored electricity in the 

battery, use a back-up technology to ensure that total production (from intermittent 

electricity and the back-up technology) is equal to consumption.  

We use this battery strategy for each of the 23 countries when there is no trade in electricity, 

as well as for EU-23.FB, and also when there is full trade in electricity between the 23 

countries, henceforth termed EU-23.trade. For the latter case, we assume (for simplicity) 

that trade is never constrained by the capacity of international transmission lines for 

electricity. Hence, for each hour, we group countries into two categories, those having 

positive excess production in this hour and those have negative excess production. Excess 

production (in an hour) is defined as the difference between these two numbers. 

We also take into consideration that batteries are not perfect, that is, there are various losses 

associated with batteries. Here, we focus on the two largest sources, that is, loss associated 

with charging a battery (10 percent) and self discharge (0.1 percent per month).  

Using the derived optimal capacity shares as well as the optimal total intermittent capacity, 

the weather data and the battery strategy, we can simulate the evolvement of stored 

electricity in the battery, as well as calculate production from the back-up technology (if it 

is necessary to use this technology). Because the battery strategy is myopic and thus does 

not take intertemporal considerations into account, before we proceed we check whether it 

is possible to reduce stored electricity in the battery, provided that the (pre-determined) path 

of production from the back-up technology is not changed in any hour. We find that this is 

not possible.  
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Figure 3 shows the resulting graphs for stored electricity in the battery (black graph) and 

accumulated production from the back-up technology (red graph) in the case of full trade 

between the 23 countries. In hours where electricity is stored in the battery, the graph for 

the evolvement of stored electricity is increasing, whereas this graph is decreasing in hours 

where electricity is discharged from the battery. Finally, in hours where excess production 

is negative, but there is no stored electricity in the battery, the graph is flat. In these hours, 

there is production from the back-up technology; the graph showing accumulated 

production from the back-up strategy increases in these hours.  

As seen from Figure 3, stored electricity in the battery peaks at 137 TWh. This number can 

be compared to annual average consumption of electricity in the 23 countries, which is 3039 

TWh. Hence, in the most demanding hour in the period 2006-15, an amount of electricity 

corresponding to 5 percent of annual electricity consumption is stored. The corresponding 

figures for the single countries (when there is no trade) are shown in Figure 4; these vary 

between 7 and 28 percent with a mean equal to 12 percent.  

Figure 5 provides information on average annual stored electricity relative to average annual 

consumption of electricity. As seen from Figure 4, for EU-23.trade the number is 15 percent, 

which is much lower than the number for single countries (without trade); these vary 

between 18 and 37 percent with a mean equal to 27 percent.  

Figure 6 provides information on hourly charge into the battery (positive), and hourly 

discharged from the battery (negative) in the case of EU-23.trade when hourly charge and 

discharge are  measured relative to average hourly consumption in EU-23. In the most 

demanding hours, hourly charge corresponds to around 150 percent of average hourly 

consumption, whereas hourly discharge corresponds to 100 of average hourly consumption. 

Note that these hours occur infrequently; the vertical axis in Figure 6 measures number of 

hours in the period 2006-15.   

We now turn to production from the back-up technology, see Figure 3. For the period 2006-

15, total production from this technology is almost 700 TWh, which corresponds to around 

2 percent of total consumption. The corresponding shares for single countries (without 

trade) are shown in Figure 7; these vary between 3 and 5 percent. Because we have imposed 

that total intermittent production should be equal to total consumption over the period 2006-

15, accumulated production from the back-up technology is equal to stored electricity in the 

battery in the last hour in 2015 plus accumulated losses in batteries.   
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Whereas the market share of the back-up capacity is low, its capacity is large (368 GW); if 

it is fully utilized, it will generate an amount of electricity that is slightly (6 percent) higher 

than average hourly consumption in EU-23. The reason is simply that the back-up capacity 

has to be able to handle hours with low intermittent production and high load.  

 

4 Robustness   

In this section we test the robustness of the results obtained in Section 3 with respect to i) 

imposed total intermittent production relative to total consumption in the period 2006-15, ii) 

sequence of weather and load characteristics in the ten years period under study, and iii) which 

cells that are developed for intermittent production.    

 

Level of intermittent production 

In the reference case, we imposed that for the entire 2006-15 period total intermittent production 

should equal total consumption of electricity for each country. Assume, alternatively, that 

intermittent capacities are chosen under the restriction that total intermittent production should 

exceed total consumption. If, for example, total intermittent production exceeds consumption 

by 20 percent, we find that the optimal capacity shares are almost identical to the ones in the 

reference scenario. This result reflects that by assumption, total capacity of a technology is 

spread evenly between the 10 percent best cells, and the productivity of each cell ( )i
tβ  is 

constant, that is, independent of the capacity installed.  

However, more intermittent production has of course impact on the need for back-up production 

and also on the amount of electricity stored in the batteries. Let λ  measure imposed total 

intermittent production relative to total consumption in the period 2006-15 ( 1λ =  in the 

reference scenario). Figure 8 shows the relationship between this parameter and total back-up 

production. As expected, a higher value of λ  lowers back-up production. In particular, for λ  

exceeding 1.43, there is no need for a back-up technology.  

If the parameter λ  is increased further, at least as a rule of thumb, the amount of electricity 

stored in the batteries decreases. In order to avoid any storage of electricity in the batteries, λ  

has to be as high as 10.73. This reason is simply that over the 10-year period 2006-15, there are 

several demanding hours with little wind/solar irradiance and high load.    
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Sequence of years 

In the reference case, we followed true time over the period 2006-15. The sequence of years 

may be important because in the first hour of the 10-year period, per assumption there is no 

stored electricity in the battery. If the start of the first year is characterized by low wind/solar 

irradiance or high load, there will be demand for back-up production and hence no electricity 

will be stored in the battery.  

We now test the importance of the sequence of years by Monte Carlo simulations: We draw 

one year from a distribution over the 10 years in the period 2006-15. This will be our first year 

in a 10-year sequence. We repeat this procedure 10 time, and thus obtain a specific sequence of 

10 years. We then draw a new sequence of 10 years, and continue until we have 100.000 

sequences Because we always draw from the distribution over the years in the period 2006-15, 

most sequences contain less than 10 distinct years.  

For each sequence, we undertake the exercise described in Section 3, and thus obtain variables 

for maximum stored electricity in an hour, average annual stored electricity in the batteries, 

average annual production from the back-up technology, and capacity of the back-up 

technology. Panels a-d in Figure 9 show histograms of these four variables, and also report their 

average value; they are 144 TWh (maximum stored electricity in an hour), 465 TWh (annual 

stored electricity), 61 TWh (annual backup production), and 362 (backup capacity). These 

averages do not differ much from the corresponding values in the reference case in Section 3.  

 

Top cells  

In the reference case, investment in capacity of an intermittent technology is spread out evenly 

between its 10 percent top cells. However, even among these cells there is a significant 

difference in productivity ( ).i
tβ  An alternative assumption is that for each technology, first 

development takes place in the best cell, then in the second best cell, etc. With such a cost-

efficient rule, one has to decide how much capacity that can be developed in a cell.  

In the reference case, for most countries installed capacity of an intermittent technology varies 

between 2.5 GW and 12.5 GW per cell. In the Appendix, we discuss land requirement per MW 

installed capacity for wind parks and solar parks. With our estimates, between 1 percent 
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(corresponding to 2.5 GW) and 5 percent (corresponding to 12.5 GW) of the land in an onshore 

cell is used for development of an intermittent technology in the reference case.  

We now redo the exercise in Section 3 ( 1)λ =  under the alternative assumption of cost-efficient 

development. First, we impose that 2.5 GW capacity can be installed in each cell. Then the cap 

is increased to 12.5 GW. For both caps, we draw 20.000 sequences of 10 years, see the 

procedure above. Figures 10 and 11 show the resulting histograms for a 2.5 GW cap and a 12.5 

GW cap, respectively. Each figure contains four panels; maximum stored electricity in an hour, 

annual stored electricity in the batteries, annual production from the back-up technology, and 

capacity of the back-up technology. These can be compared to the corresponding panels in 

Figure 9 where the 10 percent best cells are developed. Overall, we find moderate differences 

between the three cases. 

 

 

 

5 Concluding remarks   

Using re-analysis data for the period 2005-16 and simulations, we have shown how Europe can 

design an electricity generation sector where around 98 percent of total production is generated 

by wind power and solar. In our reference case, a large amount of batteries must be installed to 

make the system work. In the most demand hour in the period 2006-15, an amount of electricity 

corresponding to 5 percent of average annual consumption of electricity has to be stored in the 

batteries. Average annual use of batteries corresponds to 15 percent of average annual 

consumption of electricity. Note that these numbers are for the case of 23 European countries 

trading in electricity. Without any trade, the numbers for single countries are much larger.  

Throughout the paper, we have referred to a flexible backup technology to be used in periods 

with low wind/solar irradiance, high load and no electricity stored in the battery. What are the 

emissions from this technology? If this technology is bio power, and we follow the standard 

assumption in energy market modelling, there are no GHG emissions. However, an alternative 

view is that emissions from bio power are substantial, and may be comparable to coal power, 

see, for example, Haberl et al. (2012). If so, thermal power with CCS could serve as the backup 

technology. Such a technology will meet the EU target of a 95 percent emissions reduction if 

its market share is 2 percent.  
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While we have assumed that existing electricity capacities are not used in the constructed 

electricity generation sector, application of existing nuclear and hydro capacities in the 

constructed electricity system will lower demand for storage. For example, assume that hourly 

nuclear production is constant over time (existing nuclear plants can hardly change their 

production over the day), and that their share of total production is 25 percent, which was the 

case in the EU in 2015. Then maximum battery capacity is lowered from 137 TWh (reference 

case ) to 107 TWh, whereas annual battery usage is lowered from 459 TWh (reference case ) to 

343 TWh.  

On the other hand, the EU goals of radical emissions reductions (40 percent by 2030 and 80 

percent by 2050) may require (partial) electrification of several activities, for example, 

transportation, heating and cooking. Thus, over time demand for electricity will increase in 

Europe. Assume that the generated effect is an increase in hourly electricity demand by 50 

percent of average hourly consumption (in all 23 countries, in all years, in all hours). Then 

maximum battery capacity is increased from 137 TWh (reference case ) to 222 TWh, whereas 

annual battery usage is increased from 459 TWh (reference case ) to 702 TWh.  

However, we may also use the existing hydro capacity (in addition to nuclear plants) in the 

constructed electricity system, and take advantage of the fact that reservoir hydro and pumped 

storage hydro are flexible technologies with respect to hourly and seasonal production profiles. 

Typically, the amount of water in reservoirs reaches a minimum in the spring and a maximum 

in the fall. By postponing half of the hydro production from the spring to the fall, using existing 

nuclear capacities, but also take a 50 percent increase in demand for electricity into account, 

maximum battery capacity is found to be 137 TWh, that is, the same number as in the reference 

case. This suggests that the EU may be able to handle its climate targets mainly through a 

combination of expansion of wind and solar power, massive investment in batteries, and use of 

the existing nuclear and hydro capacities.  

 

 

 

Figure 1  Optimal capacity shares in intermittent technologies 
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Figure 2  Accumulated excess electricity production in Italy 
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Figure 3  Battery capacity and accumulated back-up production. 23 countries with trade. 
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Figure 4  Battery capacity as a percentage of average annual consumption 
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Figure 5  Average annual battery use as a percentage of average annual consumption 
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Figure 6   Historgram of charge and discharge measured as percentage of average hourly 
consumption. 23 countries with trade.  
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Figure 7  Average annual production from the back-up technology relative to average 
annual consumption.  
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Figure 8  Annual battery use and backup production. 23 countries with trade. 

 

 

  



21 
 

Figure 9  Monte Carlo Simulations when top 10 percent cells are developed for 
intermittent production. 23 countries with trade. 
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Figure 10  Monte Carlo Simulations with cost-efficient development of intermittent 
production and cap in each cell is 2.5 GW. 23 countries with trade. 
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Figure 11  Monte Carlo Simulations with cost-efficient development of intermittent 
production and cap in each cell is 12.5 GW. 23 countries with trade. 

 

 

 

  



24 
 

References: 

Breyer, C., Bogdanov, D., Aghahosseini, A., Gulagi, A., Child, M., Oyewo, A. S., Farfan, J. and  
K. Sadovskaia (2017). Solar photovoltaics demand for the global energy transition in the 
power sector. Progress in photovoltaics: Research and applications, 1-19.  

Clack, C. T. M., Qvist, S. A., Apt, J., Bazilian, M., Brandt, A. R., Caldeira, K., Davis, S. J., Diakov,  
V., Handschy, M. A., Hines, P. D. H., Jaramillo, P., Kammen, D. M., Long, J. C. S., Morgan, 
M. G., Reed, A., Sivaram, V., Sweeney, J., Tynan, G. R., Viktor, D. G., Weyant, J. P. and J. F. 
Whitacre (2017). Evaluation of a proposal for reliable low-cost grid power with 100% wind, 
water, and solar. PNAS, Vol. 114 (26), 6722-6727. 

Elliston, B., Diesendorf M. and I. MacGill (2012). Simulations of scenarios with 100% renewable  
 electricity in the Australian national electricity market. Energy Policy, Vol. 45, 606-613. 

Elliston, B., Diesendorf M. and I. MacGill (2014). Comparing least cost scenarios for 100% renewable  
electricity with low emission fossil fuel scenarios in the Australian national electricity market. 
Renewable Energy, Vol. 66, 196-204.  

Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A.,  
Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., 
Akella, S., Buchard, V., Conaty, A., Da Silva, A.M., Gu, W., Kim, G-K., Koster, R., Lucchesi, 
R., Merkova, D., Nielsen, J.E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, 
S.D., Sienkiewicz, M. and B. Zhao (2017).  MERRA-2, Journal of Climate, Vol. 30, 5419-
5454. DOI: 10.1175/JCLI-D-16-0758.1 

Haberl, H., Sprinz, D., Bonazountas, M., Cocco, P., Desaubies, Y., Henze, M., Hertel, O.,  
Johnson, R. K., Kastrup, U., Laconte, P., Lange, E., Novak, P., Paavlola, J., Reenberg, A., van 
den Hove, S., Vermeire, T., Wadhams, P. and T. Searchinger (2012). Correcting a 
fundamental error in greenhouse gas accounting related to bioenergy. Energy Policy, Vol. 45, 
18-23.  

Jacobson, M. Z., Delucchi, M. A., Cameron, M. A. and B. A. Frew (2015). Low-cost solution to the  
grid reliability problem with 100% penetration of intermittent wind, water, and solar for all 
purposes. PNAS, Vol. 112 (49), 15060-15065. 

 
Koskinen, O. and C. Breyer (2016). Energy storage in global and transcontinental energy scenarios:  

A critical review. Energy Procedia, Vol. 99, 53-63. 

Mai, T., Mulcahy, D., Hand, M. M. and S. F. Baldwin (2014). Envisioning a renewable electricity  
 future for the United States. Energy, Vol. 65, 374-386. 

Rasmussen, M. G., Andresen G. B. and M. Greiner (2012). Storage and balancing synergies in a fully  
 or highly renewable pan-European power system. Energy Policy, Vol. 51, 642-651. 

Salomon, A. A., Bogdanov, D. and C. Breyer (2018). Solar driven net zero emission electricity supply  
with negligible carbon cost: Israel as a case study for Sun Belt countries. Energy, Vol. 155, 
87-104. 

Searchinger, T. D., Beringer, T. and A. Strong (2017). Does the world have low-carbon bioenergy  
 potential from the dedicated use of land? Energy Policy, Vol. 110, 434-446. 

Sgouridis, S., Csala D. and U. Bardi (2016). The sower’s way: quantifying the narrowing net-energy 
pathways to a global energy transition. Environmental Research Letters, Vol. 11, 1-8. 

 



25 
 

Sinn, H.-W. (2017). Buffering volatility: A study on the limits of Germany’s energy revolution.  
 European Economic Review, Vol. 99, 130-150. 

 



Appendix. Solar and wind data.
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A.1 Raw data

We have fetched data from three MERRA-2 databases at https://disc.sci.gsfc.

nasa.gov/datasets?keywords="MERRA-2", called tavg1 2d slv Nx, tavg1 2d rad Nx,
and tavg1 2d flx Nx. Henceforth referred to as slv, rad, and flx. We have fetched
data from the period 2006-01-01 to 2015-12-31. The variables are:
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• swgdn is shortwave incident flux on the ground, i.e. the solar flux on a horizontal
plane in the spectrum 175-3800 nm (W/m2). From dataset rad.

• swtdn is shortwave incident flux at top of atmosphere. From dataset rad.

• albedo is full spectrum albedo of the earth’s surface. From dataset rad.

• u50m, v50m are east- and northwards wind speed component at 50m height (m/s).
From dataset slv.

• t2m is temperature at 2m height (Kelvin). Converted to Celsius by subtracting
273.15. From dataset slv.

• z0m is the surface roughness coefficient (m). From dataset flx.

• rhoa is the air density at ground level (kg/m3). From dataset flx.

The MERRA-2 data are organized along three dimensions; a 2d-grid with latitude
resolution 0.5 degrees and longitude resolution of 5/8 degrees, and time by hour. The
data in the tavg1-datasets are averaged over time and over each grid-cell, with the
lat/lon-coordinate being the centre of the cell. The time is in UTC, the start of each
1-hour period.

We then assign a country and an offshore/onshore status to the cells as follows.
We use offshore zones downloaded from http://www.marineregions.org/ (Maritime
Boundaries). We use offshore zones which are designated as internal waters or within
12 nautical miles from shore. If the grid cell overlaps an offshore zone, we assign it as
offshore to that country. It is possible that a cell is offshore to more than one country;
in that case we choose one of them. Otherwise, if the centre of the cell lies onshore in
a country as determined by R-package sp [9], with the high resolution map available in
R package rworldxtra [11], we assign it to that country. The cells which have not been
assigned to a country are discarded. Figure 1 depicts the onshore and offshore cells we
use.

A.2 Variable transformations

A.2.1 Wind

We need the scalar wind speed at 100m since MERRA-2 does not provide wind at 100m.
First we compute the wind speed at 50m as v50 = (u50m2 + v50m2)1/2.

Then we use the logarithmic wind profile law, found e.g. in [2],

vh = v0
log(h/z0)

log(h0/z0)
,

where vh is wind speed at height h, v0 is wind speed at height h0, and z0 is the surface
roughness coefficient. This is the MERRA-2 variable z0m. We can now compute the wind
speed at height 100 m as

v100 = v50
log(100/z0)

log(50/z0)
.

The output of a wind turbine depends on several factors. The rated power is typically
specified at an air density of 1.225 kg/m3, which is the density of dry air at 15 ◦C at
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Figure 1: Onshore and offshore cells

a standard pressure of 101.325 kPa. The wind energy is proportional to the density,
which varies with pressure, temperature and humidity. We compute a density factor as
ρ = rhoa/1.225. That is, we somewhat inaccurately assume the same factor applies at a
height of 100 m.

To find the output power relative to the rated power, which is a function of the wind
speed C(v), we can use a cubic power curve. Its shape is determined by three parameters.
The wind speed is adjusted with the density so that v = ρ1/3v100.

The simplest power curve is determined by three parameters; a cut-in speed vi, a
rated speed vr, and a shut-off speed vz:

C(v) =


0 for v < vi,(
v−vi
vr−vi

)3
for vi ≤ v ≤ vr,

1 for vr < v < vz,

0 for v ≥ vz.

More realistically, a sigmoid cubic can be used, based on the S-shaped graph of the
function f(x) = 3x2 − 2x3. We add an additional parameter vo, and let the power go
smoothly to 0 when wind is stronger than vo:

S(v) =



0 for v < vi,

3
(
v−vi
vr−vi

)2
− 2

(
v−vi
vr−vi

)3
for vi ≤ v ≤ vr,

1 for vr < v < vo,

1− 3
(
v−vo
vz−vo

)2
+ 2

(
v−vo
vz−vo

)3
for vo ≤ v ≤ vz,

0 for v ≥ vz.

For a selection of wind farms, we have estimated farm curves from the MERRA
wind by finding the vi, vr, vo and vz which minimize

∑
i |mi − pi|2, with pi being actual
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Figure 2: Power curves
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production in hour i, and mi is modeled production with a sigmoid cubic and MERRA
wind. The i ranges over the three years 2013–2015.

Figure 2 shows six power curves: a C(v) for vr = 12, a S(v) for vr = 15, two
curves for actual wind farms, and power curves of the standalone turbines used in the
farms (Bonus for Hitra, Siemens for Høg-Jæren). The standalone power curves are inter-
polated from http://en.wind-turbine-models.com/powercurves, whereas the power
curves for the farms have been lifted from NVE Rapport 20/2014, appendix C (http:
//publikasjoner.nve.no/rapport/2014/rapport2014_20.pdf).

The farm power curves have been estimated by NVE from a wake loss model, and a
run of the WRF weather model from NCAR, with local topographical data. That is, its
reference wind is not MERRA-2 wind speed, but wind speed at one or more particular
points in the area, as computed by a particular run of WRF. It is therefore not directly
comparable with our data. In particular, the Hitra farm uses Bonus 82/2300 turbines,
but the farm power curve actually lies above the turbine’s power curve. This is because
the reference wind is taken at a place with less favourable wind conditions than the actual
turbines. That is also the reason why the farm curve starts to decline long before the
cut-out speed of the turbine.

In a real wind farm the power curve also depends on the wind direction. We have
looked at data for a wind farm to compare a directional power curve to a fixed power
curve. For the Hitra wind farm we do have production data, as well as modelled data
with different power curves, both a directional one, and a direction-averaged one, and
modelled production from NVE, which they use for analysis. The various power curves
we have used is the turbine curve for the Bonus 82 turbine, the NVE provided fixed and
directional power curves (NVE Rapport 20/2014), our own estimated power curve, and
actual production. These are summarized in Figure 3. Our estimated power curve is
in reasonable agreement with the actual annual production, we are however too low in

4

http://en.wind-turbine-models.com/powercurves
http://publikasjoner.nve.no/rapport/2014/rapport2014_20.pdf
http://publikasjoner.nve.no/rapport/2014/rapport2014_20.pdf


Figure 3: Hitra full hours
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the summer, too high in the fall. We also see that there is little difference between the
directional power curve and the fixed power curve. Thus, we do not attempt to model
directional power curves.

We now take a look at individual hours for the Hitra wind farm in June 2013. The
results are in figure 4. We have simulated production with our own estimated power
curve, with the NVE provided farm power curve, and compare these to actual hourly
production. Given that our geographical resolution is quite coarse, we think we are fairly
close to the reality. However, the question remains, which farm curve to use in general.

In short, we have two systematic data problems with finding a generic power curve.
The wind we have is averaged over a quite large area, whereas a wind farm typically will
be placed where the wind is most favourable. But a wind farm will typically have some
wake loss, which makes it less efficient than a single turbine. We do not have the capacity
to model local topography to estimate the wind at the best sites, neither do we model
output from existing wind farms like the EU EMHIRES project, and hence we settle for
a single wind farm curve referenced to our MERRA wind.

To find a generic power curve, we have made a comparison between estimated power
curves for a handful of Norwegian wind farms based on MERRA-2 wind in the nearest
MERRA-2 grid cell. These are named Hitra, Smøla, Lista, Høg-Jæren, Raggovidda, and
Bessakerfjellet. The results are shown in Figure 5. Typically, we estimate a vi which is
smaller than the turbine’s vi. This is probably because the wind is stronger in the farm
than the averaged MERRA wind, so when MERRA wind is below the turbine’s cut-in
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Figure 4: Hitra wind farm, june 2013 by hour
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Figure 5: Estimated farm power curves
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wind, the actual wind is above, so there is production. The estimated vr is typically
larger than the turbine vr, which most likely is due to wake loss.

We have settled for a generic farm curve with vi = 3, vr = 17.5, vo = 22, and vz = 25.
This is quite similar to parameters we estimate for the Høg-Jæren wind farm. With our
generic power curve we match the aggregated capacity factor for Germany quite well,
as can be seen in the EMHIRES comparison in section A.6. In addition, for the 10%
best cells in Germany we simulate an annual average of 2658 full-load hours over the 10
year period 2006-2015, whereas expected full-load hours for wind turbines installed in
Germany in 2018 is 2788 hours. [6]

A.3 PV

MERRA-2 does not have a variable for diffuse radiation, which we need when computing
the insolation on a tilted solar panel. But we may estimate it from the ground radiation
r = swgdn and the top of atmosphere radiation rt = swtdn as follows. We first compute
a clearness index as k = r

rt
. We then compute the diffuse fraction of the ground radiation

as d = (1 + exp(−5.0033 + 8.6025k))−1, which is the simple model found in [3]. That is,
direct radiation is (1− d)r, and diffuse radiation is dr. Ideally, we should have used the
more elaborate BRL-model from [7], but we do not have the required data.

The direction to the sun at a point in time at a certain place is computed by the
R-package insol [4] as a unit vector ns pointing toward the sun. The direct insolation on
a tilted panel is computed as

Rd = (1− d)r
ns · np
ns · nz

where np is an upward unit normal vector on the panel, and nz is a zenith-pointing
unit vector. Since we do not have access to local topographical data, we somewhat
arbitrarily assume that the horizon is at a 5 degree inclination. This has the benefit that
we avoid instability from excessively small denominators exactly at sunrise and sunset in
the computation above, when ns and nz are nearly orthogonal.

A.3.1 Losses

Shadowing is critical for solar panels. Our typical module has an efficiency which goes
linearly to 0 when the shadowed fraction goes to 2/3, i.e. a simple model of a module in
landscape mode with few bypass diodes. In a solar farm with array-layout, the fraction
of a module with direct radiation, i.e. the area above the shadow from the module-row
in front, is

ψ = max(0,min(1, µ
ns · nz
ns · np

)),

where µ is the horizontal distance between the rows in units of panel length (panel length
is normalized to 1). The efficiency is therefore,

e = max(0,
3

2
(ψ − 1/3)).

For standalone modules, we assume e = 1.
Figure 6 is a schematic of a solar farm seen from the east. We show three of the panel

rows.
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Figure 6: Solar farm schematic
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For standalone modules with tilt θ, the amount of isotropic diffuse radiation is,

Rf = dr(1 + cos θ)/2,

and the amount of reflected radiation from the ground is,

Rr = ar(1− cos θ)/2,

where a is the albedo. For a solar farm with array layout and a common tilt, it’s a bit more
complicated. We compute the diffuse radiation as Rf = 1

2
dr
∫ 1

0
1 − cos(γ(x)) dx, where

γ(x) is the angle in Figure 6. By standard trigonometry, we have tan(γ(x)) = µ sin θ
x−µ cos θ

. A

little care with which quadrant we are in, yields cos γ(x) = x−µ cos θ√
x2+µ2−2µx cos θ

. Integrating

by substituting the radicand, tells us that,

Rf =
1

2
dr
(

1 + µ−
√
µ2 − 2µ cos θ + 1

)
is the diffuse radiation. We assume that no reflected light reaches the module (Rr = 0).

These computations assume the horizon is at 0 degrees, and the farm is located in a
horizontal plane area. In our solar farm calculations, we do not know the size (i.e. the
number of rows) of the farm, so we assume all the rows (including the first) have the
same amount of shadow.

For PV there are thermal losses which are incorporated as in [12]. That is, we have
the ambient temperature at 2 m height from MERRA-2, Ta = t2m. We then compute the
temperature on the panel as: Tc = Ta + NOCT−20

800
rp(θ), where

rp(θ) = Rd +Rf +Rr

is the flux on the panel (adjusted for a possible tilt θ), and we use the value NOCT = 44 [12].
Then the loss factor is,

η = 1− γ`(Tc − 25)
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where γ` is the power temperature coefficient specific for the PV-module. We set γ` =
−0.0037.

A.3.2 Optimization

When optimizing the tilt θ we maximize total insolation, i.e. the sum of direct, diffuse
and reflected radiation, adjusted for shadow inefficiency e and temperature η:

R(θ) = ηerp.

These quantities vary with time, so we index with the hour t and find the tilt angle which
maximizes production over all the time periods:

θ∗ = argmax
θ

N∑
t=1

Rt(θ).

This is done separately in each of the grid cells to obtain a cell-specific optimal tilt angle.
For PV farms we maximize the total profit for a fixed area, over both the angle θ and

the horizontal distance µ between the rows. Ideally, this should be done with endogenous
prices, but we have settled for a fixed present value price of e100/MWh, and installation
cost of e1000/kW with an annual discount rate of 4% over 25 years. We use a constraint
µ−cos θ ≥ 0.5, so that there is room for half a panel between the rows. The vast majority
of grid cells has a corner solution with minimal µ = 0.5 + cos θ, though with varying tilt
θ.

When optimizing profit we need the amount of produced energy, i.e. the power effi-
ciency of the solar panel. From [12], we use the typical PV panel efficiency τ = 0.18 at
25 ◦C.

In detail, in each cell we install one GW of solar panels and compute a profit per area
P (θ, µ) as a function of the angle θ and the distance µ: P (θ, µ) = (p(1−L)

∑
t τRt(θ, µ)−

I)/µ, where I is discounted investment, p is the electricity price, and L is the system
loss. We then optimize the θ and µ:

(θ∗, µ∗) = argmax
θ,µ

{P (θ, µ) |µ ≥ 0.5 + cos θ}.

System losses, i.e. inverter loss, wiring, transformers etc. are≈ 14% according to http:
//www.greenrhinoenergy.com/solar/technologies/pv_energy_yield.php. That is,
L = 0.14.

Note that if PV panels were free, and we did not need space between them for main-
tenance, the optimal farm would just cover the area with horizontal panels (µ = 1 and
θ = 0), capturing all solar radiation in the area. Thus, if the size of the area is lim-
ited, it can be optimal to move panels as close as operationally possible and mount them
relatively flat.

In the other direction, if land were unlimited, the rows of the solar farm could be
spread arbitrarily far apart, effectively using the panels as standalone panels. This is
reflected in our formulas in that if we let µ tend to infinity, the farm formulas converge
to the standalone formulas.
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A.4 Land use

When optimizing profit of PV-farms for a fixed area, we also compute the density of solar
panels in the area. This varies with the location, though the general trend is that the
area required for a particular installed effect grows somewhat with the latitude. We end
up with a land use of typically 0.8 hectare per installed MW for most places in Europe,
increasing in the far north.

Figure 7 is a box plot of the distribution of required land per installed MW for each
country. We have removed some outliers for far north locations in Finland, Iceland and
Norway, where solar farms are not profitable. The land requirement in ha/MW can be
computed as µ/1.8. In detail, a PV panel with efficiency 0.18 and capacity 1000 W has an
area of 1/0.18 m2. So the area is 1000/0.18 m2 for 1 MW. But a PV panel in a particular
farm uses a factor µ more of the ground area, so we use 1000µ/0.18 m2/MW. Since a
hectare is 10000 m2, we end up with µ/1.8 ha/MW.

Figure 7: Land use for PV
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There is some infrastructure and various facilities associated with a solar farm, so we
round up land use to 1 ha/MW. This means that 2.5 GW installed capacity of PV will
use 1% of a grid cell in central Europe.

We have also made a rough estimate of land use by wind power. In the literature,
two approaches are common: either the net land use (the turbines, access roads to the
turbines, and other facilities) or the gross land use, the entire area of the wind farm.

REN21 [10] suggests that the net land use is 0.4 ha/MW. EWEA [1] suggests that
the gross land use is 7 ha/MW (15 MW/km2), with 1% of this being net land use. In
[8], the gross figure 13–20 ha/MW is suggested for European wind farms (6-7 ha/MW is
typical in California), with 1-3% (3-5% in the US) of this being net land use.
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Figure 8: Land use for some wind farms
Site Gross area Installed effect ha/MW MW/km2

Bessakerfjellet 3.5 57 6 16
Hitra 2 18 94 19 5
Høg-Jæren 6 73 8 12
Raggovidda 10 45 22 5
Smøla 18 150 12 8
Butendiek 33 288 11 9
Hollandse Kust 325 750 43 2
Meerwind 42 288 15 6

In Figure 8 we have tabulated gross area (km2) and installed effect (MW) for some
Norwegian onshore wind farms, and some European offshore farms. Our geographical
grid is about 50 × 50 km in central Europe. With the density of the Smøla wind farm,
this means 1 GW of installed capacity in a grid cell will occupy roughly 5% (gross) of
the area.

Offshore density is smaller due to a larger wake effect; [1] suggests area use is 50%
higher.

A.5 Consumption

We have downloaded hourly consumption data for the period 2006-2015 from ENTSO-E
(publicly available), from Nordpool(subscription), and for Great Britain from National
Grid ESO (https://www.nationalgrideso.com/balancing-data/data-finder-and-explorer
Historic demand Data).

A.6 EMHIRES comparison

EMHIRES is an EU-project for providing capacity factors hour by hour, comparable to
our data. The time series is based on MERRA-2, but onshore wind speeds are downscaled
to each wind farm site in Europe by using wind speed Weibull densites from the Global
Wind Atlas (GWA) ([5]). The assumption underlying the downscaling is that at any
time, the MERRA wind and the site wind is at the same quantile in their respective
distributions: Let Fm denote the cdf of the MERRA wind, and let Fs denote the cdf of
the site wind from GWA. To find the wind speed vs on site for a MERRA wind speed
vm, they solve the equation Fs(vs) = Fm(vm) for vs. In this way they are able to account
for more local geographical features which affect the wind speed.

Figure 9 is a country level comparison between our capacity factors and the capacity
factors from EMHIRES. For solar and offshore wind, our data aggregated to country level
matches the EMHIRES data very well. For onshore wind, there are more deviations. For
some countries, EMHIRES has a higher capacity factor, though for some countries (BE,
DK, GB, LU and NL) it is the other way around. There can be many reasons for this.
The EMHIRES data are based on actual wind farm locations with actual turbines, old
and new, whereas our data are average over quite large areas with a fixed power curve.
Typically, wind farms will be placed in locations where the wind is strong, and here the
wind exceeds the average of the larger area.
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Figure 9: Comparison with EMHIRES figures
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For small countries such as DK and BE, our classification of onshore/offshore can be
inaccurate since many cells are both onshore and offshore.
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