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Abstract  
We develop a stochastic numerical equilibrium model of the Western European energy markets. 
Both economic uncertainty with respect to future fossil fuel prices and GDP growth rates, and 
political uncertainty with respect to future climate policy, are analyzed. It is demonstrated that the 
equilibria under uncertainty differ significantly from the deterministic outcomes. Our approach to 
solve the numerical model builds on scenario aggregation, a numerical method developed to solve 
decision problems under uncertainty. 
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1  Introduction 
Agents in the European energy market face considerable uncertainty. Recently, the region 

experienced a severe recession with declining energy demand. In the future, climate treaties may 

have substantial impact on the sector. Such abundant uncertainties can have huge consequences 

on investments in capacities. At the same time, if there is reluctance to invest in one technology, 

for other technologies the market looks more promising. Thus to fully analyze the impact of 

uncertainty, we need to take into account the interdependence of different technologies, energy 

carriers and end users – this calls for a numerical equilibrium model. But it is not trivial to solve 

such a model when all agents face uncertainty. Thus it is no wonder that most analyses assume 

full certainty, or if uncertainty is analyzed, rely on simulations in stead of examining agents 

optimizing under uncertainty.  

 In this paper we will discuss how to introduce uncertainty into computable equilibrium 

models. In particular, we extend LIBEMOD, a numerical multi-market equilibrium model of the 

Western European energy markets (Aune et al., 2008), to account for uncertainty. We then use 

this stochastic version of LIBEMOD to analyze the impact of uncertainty on the European energy 

market.  

In spirit, our approach to modeling uncertainty is similar to the discussion of uncertainty 

in Debreu’s (1959, chapter 7) classic ‘Theory of Value’, where uncertainty is represented by a 

discrete event tree. In our terminology, each branch of Debreu’s event tree is called a scenario. 

Hence, in our model uncertainty is represented by a set of scenarios. Each scenario is one 

possible future realization of the uncertainty.  

The models presented in this paper have two periods. In period 1, some agents make 

decisions under uncertainty, typically to determine their future capacities through investments. In 

the beginning of period 2, the uncertainty is resolved and all agents learn the true state of the 

economy. Then all agents make decisions; producers determine how much to produce (given the 

predetermined capacities) and consumers determine how much to consume. For each realization 

of the uncertainty, that is, for each scenario, the model determines supply of, and demand for, all 

goods from all agents, and the corresponding vector of prices that clear all markets.    

The results indicate that uncertainty has a considerable impact on optimal investments. 

First, investments in electricity transmission are considerably higher under uncertainty. This is 
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true both when the uncertainty is about GDP growth and fossil fuel prices (economic 

uncertainty), and with uncertainty about future climate policy (political uncertainty). Optimal 

investments in wind power are also much higher under uncertainty, and this result is particularly 

strong when there is uncertainty about future climate policy: the relative advantage of green 

technologies over fossil based technologies is then strong. This illustrates the importance of 

modeling the interdependence between different markets and technologies.  

We also compare Monte Carlo simulations to the true optimal policy under uncertainty.  

For aggregated numbers, the results of the Monte Carlo simulations are usually closer to the 

optimal outcome than the deterministic solution (no uncertainty). However, in some cases, and in 

particular for single countries and single technologies, Monte Carlo simulations may produce 

numbers that are far from the optimal ones. 

Our paper demonstrates that is possible to solve large computable equilibrium models 

with significant uncertainty in several variables. Our approach builds on scenario aggregation, a 

numerical method developed to solve decision problems under uncertainty (Wets, 1989, 

Rockafellar and Wets 1991, Kall and Wallace 1994). Scenario aggregation, and more generally 

stochastic programming, examines a single optimizing agent under uncertainty. Choosing a 

planner as the optimizing agent, one can find the efficient outcomes of an economy (see e.g., 

Kolstad, 1996). Our contribution is to use scenario aggregation in order to analyze uncertainty – 

within numerical multi-market equilibrium models - when many optimizing agents make 

decisions simultaneously. 

The LIBEMOD model is too large and complex to be suitable for a simple representation 

of the scenario aggregation method. In Section 2 we therefore present a much simpler model to 

outline the basic approach taken.1

 

 Section 3 provides a short description of LIBEMOD, and in 

Section 4 we first describe the scenarios and then discuss the results, comparing the optimal 

solution under uncertainty to the equilibrium under no uncertainty and also the Monte Carlo 

outcomes. Finally, Section 5 concludes.  

                                                           
1 The present paper builds on stochastic programming. An alternative approach is dynamic programming (Stokey et 
al., 1989), in particular numerical solutions to variational inequalities, see, for example, the study of Haurie, Zaccour 
and Smeers (1990) on ligopolistic markets under uncertainty. 



4 

 

 

 We will return to a description of LIBEMOD in Section 3, but first we will present the 

method used. LIBEMOD is too large and complex to be suitable for a simple representation of 

the scenario aggregation method for modeling uncertainty in computable equilibrium models. In 

Section 2 we therefore present a much simpler model to outline the basic approach taken.2

 

  

2  Scenario aggregation 
Below we first consider a model with only one source of uncertainty. This model is so 

simple that it can easily be solved analytically. We first solve the model in the standard way, that 

is, without using scenario aggregation, and then use our method to solve the simple model. We 

then consider the most frequently used approach to analyze uncertainty, namely Monte Carlo 

simulations, and compare this approach to the scenario aggregation method. Finally, we present 

how to use scenario aggregation within a general set up.  

 

2.1 A simple example 

Consider an economy with uncertainty in demand only. The model has one representative 

producer and one representative consumer. The producer has to decide on energy production 

capacity in period 1, that is, before observing the realization of the stochastic variable. The 

consumer observes the realization of the stochastic variable (in period 2) before deciding how 

much energy to buy. Finally, because there is no cost of production and the producer is assumed 

to be a price taker, the producer will, in period 2, use his entire capacity in energy production.  

 

2.1.1 The standard solution 

There is one representative producer who installs a capacity

Supply 

K  at a unit cost c , and maximizes 

expected profits: 

[ ]cKKpE −)(max θ  

                                                           
2 The present paper builds on stochastic programming. An alternative approach is dynamic programming (Stokey et 
al., 1989), in particular numerical solutions to variational inequalities, see, for example, the study of Haurie, Zaccour 
and Smeers (1990) on ligopolistic markets under uncertainty. 
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where the price of the product, p , is assumed to depend on the uncertain weather  θ . The first-

order condition is  

 

 .Ep c=  (1) 

 

Because the producer does not know θ  before making a decision about the capacity, expected 

price has to equal marginal cost.  

 

We assume a quasi-linear utility in two goods; one good, z , termed comfort, and another, y , 

representing all other goods:   

Demand 

.),( yzyzu +=  

Comfort depends on energy consumption x  and the weatherθ :  

xz 2θ= . 

Normalizing the price of other goods to 1, the budget condition becomes ,px y m+ =  where m is 

the given income of the consumer. Utility can now be written as  

 

)( pxmx −+θ . 

 

Maximizing utility yields the first-order condition  

 

θ=xp2 . 

 

Because the model is very simple, we can easily derive the equilibrium solution. In equilibrium, 

demand has to equal supply, which equals capacity, thus 

Equilibrium 

Kx = . The first-order conditions for the 

producer and the consumer, along with the equilibrium condition, provide the following system 

of equations: 
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with the solution 
2

2






=

c
EK θ . 

 

 

2.1.2 Scnenrio aggregation 

We now analyze the same model using scenarios to describe the uncertainty. Define a set of 

scenarios s S∈ . In general, a scenario determines all uncertain variables, but in our simple case 

there is only one uncertain variable, namely the weather. The “value” of the weather depends on 

the scenario, which we formalize by writing sθ . A scenario s is realized with a probability  sq , 

and obviously  .1=∑ ∈ sSs q   

Let all decision variables depend on the scenario. Thus, we index both consumption and 

capacity by s; sx and sK . Hence, an agent now has one decision variable for each scenario. In the 

model above we assumed that the consumer knew sθ  before deciding on sx  (in period 2). Thus, 

the choice of consumption will depend on the state of the economy, that is, which scenario that 

has materialized. Hence, for two different scenarios s  and 's  we will in general have 's sx x≠ . 

For the producer, however, sθ  is not known when sK  is chosen (in period 1). Therefore, the 

producer cannot choose different capacities in different scenarios, that is, we impose the 

requirement KKs =  for all Ss∈ . The producer maximizes expect profits subject to the latter 

restriction: 

 

[ ]max

s.t.  for all .

s s s s
s S

s

q p K cK

K K s S
∈

−

= ∈

∑
 

 

2 p x
Ep c

x K

θ=
=
=
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The first-order conditions are:3

 

  

s s s sq p q c µ= +  (2) 

 

where sµ  is the Lagrange multiplier of the restriction  for all .sK K s S= ∈  Adding all first-order 

conditions in (2)  yields 

.s
s S

Ep c µ
∈

= +∑  

From the first-order condition (1) we know that cEp = , and hence  

 

 0.s
s S

µ
∈

=∑  (3) 

 

Note that if we define  
s

s
qs
µµ =~  , the first-order condition (2) simplifies to  

 for all s sp c s Sµ= + ∈ . 

Moreover, condition (3) now becomes  

0~ =µE  

which is the only equation where the probabilities appear. 

We now collect the first-order conditions and the constraints: 

 

2  for all 
 for all 

 for all 
 for all 

0.

s s s

s s

s s

s

p x s S
p c s S
x K s S

K K s S
E

θ
µ

µ

= ∈

= + ∈

= ∈
= ∈
=





 

 

We see that relative to the deterministic case, uncertainty only amounts to a small modification in 

the second first-order condition (the term sµ ) and the additional constraints KKs = . All these 

                                                           
3 In LIBEMOD, these are actually complementary slackness conditions due to the non-negativity constraint 0.K ≥  
Such conditions are essential in dynamic models, see section 6 for details. 
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equations apply to each scenario, so with n  scenarios the number of equations equals 4n . 

Finally, under uncertainty we have the additional constraint 0~ =µE . Since the first-order 

conditions are either (de facto) unchanged or only slightly modified relative to the deterministic 

case, the scenario aggregation approach requires only a modest change in computable equilibrium 

models like Libemod. However, the number of equations increases from 3 (under certainty) to 

4 1n + (under uncertainty).   

 

 

 

 

 

 

2.1.3 Monte Carlo simulations 

Consider the following system of equations:  

 

2  for all 
 for all 

 for all .

s s s

s

s s

p x s S
p c s S
x K s S

θ= ∈

= ∈
= ∈

 

 

The solution of these equations corresponds to a Monte Carlo simulation of the original model, 

where we obtain one value for each endogenous variable , ,s s sp x K  for each scenario s, that is, 

for each realization of sθ . In particular, the capacity sK  will in general differ between the 

scenarios. Monte Carlo simulations thus simply ignore the fact that producers in the economy do 

not know which scenario that will materialize. Put differently: Under Monte Carlo simulations, 

the solution is found under the false assumption that producers consider the future as certain – 

which scenario that for sure will materialize differs between the simulations.  

Comparing the Monte Carlo approach and the assumption that agents take the uncertainty 

into account when making decisions, we note some major differences. In the Monte Carlo 

simulations, cps =  in all scenarios. Thus there is no variation in the price, but production and 

capacity will be different in each scenario. On the other hand, with stochastic optimizing agents, 
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capacity ( K ), which is determined before the producer knows which scenario that will 

materialize, and production, which is equal to capacity, do not differ between the scenarios, 

whereas the price differs between the scenarios: )2/( Kp ss θ= .  

More fundamentally, according to economic theory uncertainty about future conditions 

change the behavior of agents (compared with the case of no uncertainty). This is captured by the 

scenario aggregation method as producers maximize expected profits, but it is not captured by 

Monte Carlo simulations. For each Monte Carlo simulation, a realization of the stochastic 

variables is drawn from a probability distribution. This realization amounts to specific parameter 

values that are used to find the equilibrium in a deterministic model. By simulating n times, one 

finds n equilibria, all obtained from the same deterministic model. Needless to say, the 

realizations (parameter values) will in general differ between each of the n runs, but agents 

neglect uncertainty simply because the model is deterministic. 

 

 

2.2  The general approach of modeling uncertainty 

We now turn to the general case of several sources of uncertainty and several decisions to be 

taken under uncertainty. In order to simplify, we neglect equilibrium aspects and consider the 

maximization problem of a single actor, e.g., a producer deciding on capacities to maximize 

expected profits. This is a stochastic optimization problem that may be written on the form 

 

max ( , )s sK s S

f K qξ
∈

 
 
 
∑ . 

Here ( , )f K ξ   is a value function, K  is a vector of decision variables, sξ  is a realization of a 

vector of uncertain variables, and s  is a scenario index, { }1,2,..., .s S n∈ =  Finally, sq  is the 

probability that scenario s  will materialize. Assuming that we have no information that rules out 

any scenario, we include all possible scenarios in the set S . 

A core idea of the method of scenario aggregation is to rewrite this problem by using a 

vector of decision variables for each scenario: 
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1, 2 ,..
max ( , )s s sK K s S

f K qξ
∈

 
 
 
∑  

subject to s nK K=  for all Ss∈ , ns ≠ , where sK  is the vector of decision variables in scenario 

s . With this reformulation, the Lagrange function is of the form 

[ ]

1

1

( , ) ( )

( , )

n

s s s s s n
s S s

s s s s s s
s S s S

L f K q K K

f K q K L

ξ λ

ξ λ

−

∈ =

∈ ∈

= + −

= + =

∑ ∑

∑ ∑
 

where snsn λλ ∑−= ≠  and where sL ( , )s s s s sq f K Kξ λ= +   can be seen as a Lagrange function for 

scenario s. The first-order conditions for the maximization problem are  

 

SsLsxs
∈=∇  allfor  0  

0

 for all .

s
s S

s nK K s n

λ
∈

=

= ≠

∑
 

 

Like in 2.1.2 the normalization  

s
s

sq
λλ =  

allows us to rewrite the conditions as  

( , ) 0 for all 

0
 for all .

sx s s s

s n

f K s S

E
K K s n

ξ λ

λ

∇ + = ∈

=
= ≠



  

We thus find a similar modification of the first-order conditions in the general case. 

 

3  Libemod 
We now describe LIBEMOD – the numerical equilibrium model that will be used to study 

decisions under uncertainty. LIBEMOD allows for a detailed study of the energy markets in 

Western Europe, taking into account factors like inter-fuel competition, technological differences 
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in electricity supply, transport of energy through gas pipelines/electricity lines and investment in 

the energy industry.  

The core of LIBEMOD is a set of markets for seven energy goods: electricity, natural gas, 

oil, steam coal, coking coal, lignite and biomass. All energy goods are produced and consumed in 

each of the model countries; that is, all countries in Western Europe. Natural gas and electricity 

are traded in competitive Western European markets using gas pipelines and electricity 

transmission lines that connect the model countries. There are competitive world markets for 

coking coal, steam coal and oil, but only domestic (competitive ) markets for lignite and biomass. 

While fuels are traded in annual markets, there are seasonal (summer vs. winter) and time-of-day 

markets for electricity. 

In each model country, electricity can (with several exceptions) be produced by a number 

of technologies: steam coal power, lignite power, gas power, oil power, reservoir hydropower 

(including run-of-river and pondage), pumped storage hydropower, nuclear power, waste power, 

biomass power and other renewables power (primarily wind power). Each electricity producer 

maximizes profit. Installed and maintained electricity capacity can be used to produce electricity 

or is sold as reserve capacity to a domestic system operator. There are a number of costs related 

to production of electricity. First, there are costs directly related to combustion of fuels. These 

costs depend on plant efficiency, which in the model differs across countries, technologies and 

plants. Second, there are other inputs that are assumed to vary proportionally with production, 

and third, there are maintenance costs for electricity production capacity. Finally, there are start-

up and ramping-up costs if the capacity used in one time period differs from the capacity used in 

the next time period.  

In LIBEMOD there is a distinction between power plants that existed in the data year of 

the model (which we may refer to as old plants) and new power plants. For the first group, there 

is increasing marginal costs along the merit order supply curve for each type of technology in 

each model country. Also new reservoir hydro and new wind power have increasing marginal 

costs, reflecting scarcity in favorable sites. However, each type of new thermal power plants has 

constant returns to scale cost functions, that is, efficiency does not vary between plants using the 

same type of technology.  

Electricity producers face some technical constraints, e.g., maintained capacity should not 

exceed installed (or invested) capacity, and plants need some time for technical maintenance. In 
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addition, there are technologically specific constraints. For example, for reservoir hydro, in each 

season total availability of water, that is, the amount of water at the end of the previous season 

plus water inflow in the present season, must equal total use of water, that is, water used to 

produce electricity plus water saved for the next season. Moreover, water filling at the end of the 

season cannot exceed the reservoir capacity. 

In each model country, there is demand for all types of energy from three groups of end 

users; the household segment (including service and the public sector), the industry segment and 

the transport sector. In addition, there is intermediate demand for fuels from fuel-based electricity 

producers. Demand from each end-user group (in each model country) is derived from a nested 

multi-good multi-period constant elasticity of substitution (CES) utility function. Domestic 

transport and distribution costs for electricity and natural gas differ across countries and user 

groups, but are otherwise fixed (with no capacity constraints). 

There are several versions of LIBEMOD. These differ with respect to the data year (1996 

vs. 2000), market structure (competitive markets vs. imperfect competition), time horizon (short 

run vs. long run), number of periods over the day (two vs. six), and heterogeneity in supply of, 

and demand for, coking coal and steam coal. In this study we use a version of LIBEMOD with 

competitive markets, long-run horizon (that is, there are investments in electricity production 

capacity, in international transmission capacity for natural gas and in international transmission 

capacity for electricity), two periods over the 24 hour cycle (day and night) and a simple 

modelling of coking coal and steam coal. The data year is 2000. The model determines all energy 

prices and all energy quantities invested, produced, traded and consumed in each sector in each 

model country. The model also determines all prices and quantities traded in the world markets, 

and emissions of CO2 by country and sector. 

In this paper, LIBEMOD is changed from a deterministic model into a stochastic model 

following the methodology outlined in Section 2, that is, (i) all decision variables depend on the 

scenario, and (ii) for each variable that has to be determined before the agent knows which 

scenario that will materialize, here investments in the energy industry, we impose the requirement 

that the agent has to choose the same value for all scenarios. Once the agents know the scenario, 

all the remaining variables are determined.  
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4  Simulation results 
4.1 Scenarios 

We focus on two types of uncertainties; economic uncertainty and political uncertainty, see Table 

1. In the first case, oil and coal prices in 2030, as well as GDP in all model countries in 2030, are 

uncertain in period 1 (2000). Agents make investment decisions in period 1, and in the beginning 

of period 2 (2030) capacities have been expanded.  

 

Table 1  Sources of uncertainty. Investment in 2000. 

A 

B 

Economic uncertainty. 2030 oil prices, coal prices and GDP levels are uncertain.  

Political uncertainty. A carbon policy may be imposed in 2030. 

 

In the calibration year 2000 we assume that investors know the development between 2000 and 

2010, which we set equal to the true development in oil and coal prices and GDP growth rates. 

However, the development between 2010 and 2030 is uncertain for investors. In order to 

calculate the probabilities of the future states in 2030, that is, the sq  in Section 2.2, we use annual 

data for the period 1970 to 2010 and group these into four 10-years periods. We assume that the 

development from 2010 to 2020 wrt. changes in coal and oil prices and GDP growth rates is 

characterized by one of these four 10-years periods. Similarly, the development from 2020 to 

2030 is also characterized by one the four 10-years period, which may, by coincidence, be the 

same as the 10-years period from 2010 to 2020. This gives us 24  states. However, in our model 

the sequence of the two 10-years time periods between 2010 and 2030 is of no importance. We 

thus have 10 unique possible states in 2030, and each of these is termed a scenario.  
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In period 1, agents know that there are 10 scenarios, and they also know the probability of each 

scenario.4

Turning to political uncertainty, the general idea is to introduce uncertainty wrt. future climate 

policy: agents do not know which climate policy that will be imposed in the future. To simplify, 

we assume that there is a probability of 50 percent that one specific carbon policy will be 

implemented, and there is a 50 per chance that no carbon policy will be imposed. Hence, under 

political uncertainty there are two scenarios, that is, two possible future states, each with a 

probability of 50 per cent.  

 In addition, for each scenario they know the equilibrium prices if this scenario is 

materialized.  

The carbon policy that may be implemented in the future is characterized by a uniform tax on 

CO2 emissions that is imposed on all agents in the model countries. We set this tax equal to $90 

per ton CO2, which, according to IEA (2008), will be sufficient to stabilize global GHG 

concentrations in the atmosphere at 550 ppm. This is by many, among others IEA (2008), 

considered as the most likely scenario. Thus agents know that in the future, here 2030 (period 2), 

there will either be no climate policy, or a uniform tax of $90 per ton CO2 will be imposed on all 

emissions. Agents also know that the probability of each scenario is 50 percent. This information 

is taken into account in period 1 (here 2000) when investments in the Western European energy 

industry are determined.  

In examining the importance of economic uncertainty, we compare the equilibrium of the 

stochastic LIBEMOD model (scenario aggregation) with the equilibrium of the deterministic 

LIBEMOD model. In doing so, the stochastic parameters under scenario aggregation are replaced 

by their expected values. Under political uncertainty this is simply $45 per ton CO2. We also 

compare the equilibrium of the stochastic LIBEMOD model with the output from the Monte 

Carlo simulations.  

 

                                                           
4 Note that the probability of some scenarios is 1/16, whereas the probability of the other scenarios is 2/16. 
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The model is solved on a state of the art Intel-based application server with the GAMS (Brooke et 

al., 1998) language and the Path (Ferris and Munson, 1998) solver. For efficiency, the variables 

are initialized with their 2000 calibration values before solving the 2030 equilibrium under no 

uncertainty. This solution is then used as the starting point for each of the independent Monte 

Carlo equilibria, which further provides initialization for the equilibrium under uncertainty.  

 

4.2  Economic uncertainty 

The importance of uncertainty 

Below we discuss the outcome when there are three sources of uncertainty; future oil prices, 

future coal prices and future GDP levels. There is an important difference in the impact of 

uncertain fossil fuel prices versus the impact of uncertain GDPs. The impact of uncertain GDP 

will differ across countries because some countries will experience high growth rates whereas 

other countries will experience low growth rates. In countries with high growth rates, demand for 

energy will increase significantly, which, cet. par., tends to increase domestic energy prices, 

thereby providing an incentive for other countries to export energy to these countries. This 

suggests that international transmission capacity is of great importance. In contrast, the impact of 

uncertain fossil fuel prices may not differ that much between countries because under perfect 

competition all countries will face the same producer prices of oil and coal.5

In the deterministic case, that is, the stochastic parameters under scenario aggregation are 

replaced by their expected values, 5 GW is invested in international electricity transmission 

capacity between the model countries, whereas under uncertainty (scenario aggregation) the level 

  

                                                           
5 Although countries will face the same producer prices of oil and coal, the impact of uncertain producer prices may 
still differ somewhat between countries. First, the change in end-user prices of oil and coal will differ between 
countries because costs of transport and distribution, and also taxes, differ across countries. Second, the market 
shares of oil and coal differ between countries, both in end-user demand and in electricity generation: if coal power 
has a large market share and the price of coal turns out to be high, production of coal power may decrease 
significantly. This tends to increase the domestic price of electricity, thereby providing an incentive for increased 
production from other domestic electricity technologies. This effect will, however, be dampened through 
international trade of electricity. The effect through international trade resembles the effect of differences in GDP 
growth rates, but it may be much lower in magnitude because this is a derived (indirect) effect.    
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of investment is 15 GW, that is, three times higher, see Table 2. Hence, under uncertainty it is 

more profitable to invest in flexibility between countries. This may reflect differences in growth 

rates between countries: In the future (2030) a country A may experience high demand for 

electricity because of high growth rates. Rather than investing a lot in power plants in 2000 so 

that future domestic demand for sure can be met by domestic production, electricity can partly be 

imported from the neighboring country B through existing and new transmission capacities if it 

turns out that future demand (in 2030) is low in country B. These capacities can alternatively be 

used to transport electricity from A to B if it turns out that demand (in 2030) is high in country B, 

but low in country A.   

Alternatively, future production of electricity may be high in country A but low in country B 

because of structural differences in electricity production capacities. If, for example, country A 

invests in coal power whereas country B invests in oil power, and the price of coal (in 2030) turns 

out to be low whereas the price of oil turns out to be high, then country A may use its entire new 

coal power capacity whereas oil power production in country B may not profitable because oil is 

too expensive. In such a case, it would have been profitable (in period 1) to build a new 

transmission line between country A and B, which can now (period 2) be used to export 

electricity from country A to country B. Likewise, if it turns out that the price of coal (in 2030) is 

high whereas the price of oil is low, a new transmission line can be used to transport electricity 

from B to A. As suggested in footnote 5, it seems reasonable that this effect is smaller than the 

effect caused by growth rate differentials. 
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Table 2  Uncertain oil price, coal price and GDPs in 2030. Investments in gas transmission 
capacity (mtoe), electricity transmission capacity (GW) and electricity production capacity (GW) 
in 2000.  

 International 
gas 
transmission 
capacity 
(Mtoe) 

International 
electricity 
transmission 
capacity 

Total 

power 

capacity 

Hydro 

power 

capacity 

Gas 

power 

capacity 

Coal 

power 

capacity 

Bio 

power 

capacity 

Wind 

power 

capacity 

Deterministic 

Stochastic 

MC average 

157 

154 

157 

5 

16 

19 

365 

358 

354 

9 

11 

10 

30 

49 

37 

304 

249 

250 

0 

0 

13 

9 

31 

28 

 

As seen from Table 2, the difference in investment in international gas transmission capacity 

between the case of uncertainty and the deterministic outcome is marginal (2 percent). Whereas 

electricity transmission provides flexibility because electricity can be transported one way or the 

other, natural gas is mainly transported one way, that is, exported from the big extractors. Which 

scenario that is materialized may have significant impact on the export magnitudes, but not much 

impact on which countries that are exporters of natural gas. Thus, for natural gas two-way 

flexibility is not a big issue.    

In the deterministic case, total investment in electricity production capacity is 365 GW, whereas 

under uncertainty investment in electricity production capacity is slightly lower; 358 GW. The 

distribution of investments differs, however, between the two cases: In the deterministic case, 

investment in coal power is 304 GW, which is 55 GW higher than under uncertainty. Under 

certainty investors know for sure the profitability of new coal power plants, and undertake all 

projects with non-negative profitability. Under uncertainty, investors know cost of investment, 

but cost of operating a new coal power plant is uncertain because the future price of coal is 

uncertain. Thus, (part of the) new coal power capacity will not be used if the input price turns out 

to be too high. This explains why investment in coal power is lower under uncertainty than in the 

deterministic case.  
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As seen from Table 2, both in the deterministic case and under uncertainty there is no investment 

in oil power. In the deterministic case, investment in oil power capacity is simply not profitable. 

Under uncertainty, there is a chance that the oil price will turn out to be so low that investment in 

oil power will be profitable. However, at the point in time where investment has to take place 

(2000) this probability is too low to ensure a positive expected profit. Hence, also under 

uncertainty there will be no investment in oil power.  

 

Because investment in coal power is higher in the deterministic case than under uncertainty (see 

discussion above), and demand for electricity in the deterministic case does not differ much from 

expected demand under uncertainty, there is room for additional investment in electricity 

production capacity under uncertainty relative to the deterministic case. Table 2 shows that under 

uncertainty, investment in hydro power is only marginally higher than in the deterministic case, 

investment in gas power is around 50 percent higher than in the deterministic case, and 

investment in wind power is roughly 200 percent higher than in the deterministic case. In general, 

investment in different electricity technologies depends on their long-run marginal cost of 

production. In LIBEMOD these are increasing in the equilibrium quantities; either because it is 

assumed that the best locations are taken first (reservoir hydro and wind), or because there are 

increasing costs of providing more of the input (natural gas and bio mass). Our results reflect that 

reservoir hydro has a much stepper long-run marginal cost curve than wind power. 

 

In the deterministic case, the entire new electricity production capacity will for sure be used in at 

least one time period. In contrast, under uncertainty part of the new production capacity may not 

be used at all; if, for example, the coal price turns out to be very high, it may not be profitable to 

run any of the new coal power plants.  
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Because fuel prices differ between scenarios, also production of electricity will differ between 

scenarios; total production of electricity varies under uncertainty between 3721 TWh and 4809 

TWh, and has an expected value of 4571 TWh. Note that in the deterministic case, total 

electricity production is 4851 TWh, that is, slightly above the highest level of production under 

uncertainty. From the discussion above we know that total investment in electricity production 

capacity is almost identical in the two cases. Hence, the difference in total production reflects 

higher rates of capacity utilization in the deterministic case.  

 

Whereas the reported results in Table 2 for scenario aggregation reflect three sources of 

uncertainty, there are definitely more possible sources of uncertainty, for example, the weather. 

To test the importance of weather uncertainty, we introduced uncertain precipitation and wind 

(number of hours it blows in a season) in Scandinavia. Using data for a period of 21 years to 

generate 21 scenarios, we found that the equilibrium under this type of uncertainty was only 

marginally different from the deterministic outcome. Note that under the reasonable assumption 

that weather uncertainty is stochastically independent of uncertainty in oil prices, coal prices and 

GDP growth rates, we would have obtained the same result if weather uncertainty had been 

“added” to our three sources of economic uncertainty.   

 

Monte Carlo 

We now turn to the Monte Carlo simulations. Table 3 shows investment in electricity 

technologies by scenario. As explained above, in each scenario there is no uncertainty: Agents 

know for sure in 2000 (period 1) which scenario that will materialize in 2030 (period 2). Hence, 

if agents know that there will be high growth rates, they will tend to investment more; if they 

know the price of coal will be low, they will tend to invest in coal power; and if they know the 

price of oil will be low, they will tend to invest in oil power – all solutions are tailor-made.  
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Investment in coal power under Monte Carlo varies between 54 GW and 367 GW. The weighted 

Monte Carlo average is 250 GW (see Table 2),6

In the Monte Carlo simulations, there is investment in oil power in scenario 5 only; this scenario 

is characterized by a very low oil price. Here the level of investment is as high as 211 GW. The 

weighted Monte Carlo average of oil power investment (13 GW) therefore exceeds the optimal 

level under uncertainty (zero). However, under Monte Carlo the overshooting of oil power 

investment is of the same magnitude as the undershooting of gas power and wind power 

investments. Therefore, the Monte Carlo average of total investment in electricity production 

capacity differs by only one percent from the optimal solution under uncertainty. The difference 

in total production of electricity is somewhat higher (3 percent), which reflects that under Monte 

Carlo investors know which scenario that will materialize. In contrast, under uncertainty the rate 

of capacity utilization depends on which scenario that will materialize, see the discussion above.   

 which is almost identical to the investment level 

under uncertainty (249 GW). The weighted average of the Monte Carlo simulations does not, 

however, provide a good estimate of investment in other electricity technologies under 

uncertainty. For gas power, the difference is around 30 percent, whereas for wind power the 

difference is roughly 10 percent.  

 

Finally, the high level of oil power investment in scenario 5 takes place in a few countries only. 

In these countries it is profitable to invest in international electricity transmission capacity in 

order to export part of the domestic electricity production. This is the main reason why average 

Monte Carlo investment in electricity transmission lines is about 20 percent higher than the 

solution under uncertainty, see Table 2.     

                                                           
6 We use the scenario probabilities as weights. 
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Table 3  Monte Carlo. Uncertain oil price, coal price and GDPs in 2030.                                              

Investments (GW) in 2010.  

Scenario Total 

power 

capacity 

Hydro 

power 

capacity 

Gas 

power 

capacity 

Coal 

power 

capacity 

Oil   

power 

capacity 

Bio 

power 

capacity 

Wind 

power 

capacity 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

432 

405 

418 

323 

371 

377 

292 

398 

304 

238 

13 

10 

10 

13 

8 

8 

10 

7 

10 

12 

45 

27 

15 

71 

5 

10 

55 

3 

51 

90 

262 

330 

367 

138 

137 

348 

189 

379 

216 

54 

0 

0 

0 

0 

211 

0 

0 

0 

0 

0 

23 

16 

14 

22 

9 

10 

16 

9 

14 

21 

89 

22 

12 

79 

1 

1 

22 

0 

13 

61 

 

  

4.3 Political uncertainty 

In this case there is one source of uncertainty, namely whether the future carbon tax will be zero 

or 90 USD/tCO2. In general, a carbon tax enhances the competitive position of non-fossil fuel 

electricity technologies, and weakens the competitive position of fossil fuel electricity 

technologies. Because emissions of CO2 per unit of energy (measured in toe) is larger for coal 

than for oil, and larger for oil and than for natural gas, coal will typically be the big loser if a 
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carbon tax is imposed, whereas natural gas comes in an intermediate position: it improves its 

position relative to other fossil fuels, but weakens its position relative to non-fossil fuels. The net 

effect is therefore ambiguous, and may depend on a number of factors like the market share of 

natural gas in end-user demand and in electricity generation, and also on the carbon tax rate itself; 

if the tax is increased marginally from a low level, say zero, or marginally from a high level, say 

90 USD/tCO2, the effect on natural gas may be very different.  

 

Uncertainty vs. no uncertainty 

In the present case of an uncertain carbon tax, future fossil fuel prices are unknown in period 1 

(2000). Although the materialization of the uncertainty will not differ across countries – all 

countries will face (almost) the same producer prices of fossil fuels – the impact of high (or low) 

producer prices of fossil fuels will differ somewhat across counties. First, fossil fuel end-user 

prices will differ across countries because of country differences in costs of transport/distribution 

and taxes, and the impact of end-user prices differs across countries because of differences in 

end-user demand (the CES utility functions). In addition, the market share of fossil fuels, as well 

as the composition of fossil fuels, differ across countries both in end-user demand and in 

electricity generation. These effects resemble the impact of uncertain oil and coal prices under 

economic uncertainty, see above. However, under economic uncertainty both the future level of 

demand, as well as differences in demand across countries, were important factors to understand 

why investments differ between the case of uncertainty and the deterministic outcome. We 

therefore expect the difference in investment to be much lower in the case of political uncertainty 

than under economic uncertainty.  
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Table 4  Uncertain CO2 tax rate in 2030. Investments in gas transmission capacity (mtoe), 

electricity transmission capacity (GW) and electricity production capacity (GW) in 2000.  

 International 
gas 
transmission 
capacity  

International 
electricity 
transmission 
capacity 

Total 

power 

capacity 

Hydro 

power 

capacity 

Gas 

power 

capacity 

Coal 

power 

capacity 

Bio 

power 

capacity 

Wind 

power 

capacity 

Deterministic 

Stochastic 

 
MC 1 
 
MC 2 
 

MC average 

146 

136 

157 

174 

165 

19 

20 

5 

55 

30 

336 

360 

365 

365 

365 

14 

14 

9 

17 

13 

66 

72 

30 

105 

67 

120 

144 

304 

0 

152 

25 

25 

13 

33 

23 

111 

105 

9 

210 

110 

 

Table 4 shows investment in electricity technologies under the four different cases; Deterministic 

(a carbon tax of 45 USD/tCO2 will for sure be imposed), Stochastic (uncertain carbon tax), 

Monte Carlo 1 (a carbon tax will for sure not be imposed) and Monte Carlo 2 (a carbon tax of 90 

USD/tCO2 will for sure be imposed). As seen from Table 4, under uncertainty, investment in 

coal power is lower than in the deterministic outcome (144 GW vs. 120 GW). For other 

technologies, the difference is smaller: 105 GW vs. 111GW for wind power and 72 GW vs. 66 

GW for gas power. Hence, investment under uncertainty differs somewhat from investment in the 

deterministic outcome. For total investment in power capacity, the difference is around 10 

percent (360 GW under uncertainty vs. 336 GW under no uncertainty). 

Table 4 also shows that under uncertainty, investment in international electricity transport 

capacity is only marginally higher than in the deterministic outcome. The difference in 

investment in international gas transmission capacity is somewhat larger; 136 mtoe under 

uncertainty vs. 146 mtoe under no uncertainty.   
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Table 5 shows production of electricity (in 2030) by technology in the deterministic case, if there 

is uncertainty about the carbon tax and it turns out that no carbon tax is imposed (Stochastic 1), 

and if there is uncertainty about the carbon tax and it turns out that a 90 USD/tCO2 tax is 

imposed (“Stochastic 2”). The deterministic outcome is typically between Stochastic 1 and 

Stochastic 2; the only exception is for new renewable, reflecting that renewable production 

capacity is higher in the deterministic outcome than under uncertainty. Note, however, that for 

production in old fossil fuel plants, the deterministic outcome is slightly below the high value 

under Stochastic 1, whereas for production in new fossil fuel plants, the deterministic outcome is 

slightly above the low value under Stochastic 2. Hence, the deterministic outcome is not just a 

constant average of Stochastic 1 and 2; the average varies by fuel and country.   

Table 6 provides information on use of natural gas and steam coal (in 2030) by sectors 

(households, industry and power generation) in the deterministic case, the two outcomes under 

uncertainty and the two Monte Carlo outcomes. Use of natural gas does not differ much between 

Stochastic 1 and 2, and the average of Stochastic 1 and 2 is close to natural gas use under 

certainty. For use of coal, the average of Stochastic 1 and 2 is somewhat (13 mtoe) lower than in 

the deterministic outcome, but now there is a significant difference between Stochastic 1 and 2. 

Primarily, this difference reflects that with a high carbon tax (Stochastic 2) most of the old coal 

power plants are not profitable to operate, whereas if there is no carbon tax (Stochastic 1) then 

the entire old capacity of coal power plants is profitable to run. In addition, production in new 

coal power plants (as well as investment in new coal power plants) is higher in Stochastic 1 than 

in Stochastic 2.  
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Table 5 Uncertain CO2 tax rate. Production of electricity (TWh) in 2030. 

 

 

Total Old 
hydro 

Old 
fossil 
fuel 

Old 
renewable 

Old 
nuclear 

New 
hydro 

New 
fossil 
fuel 

New 
renewable 

Deterministic  

Stochastic 1 

Stochastic 2 

MC 1          
 
MC 2 

4126 

4346 

3644 

4851 

3467 

432 

432 

432 

432 

432 

717 

727 

264 

697 

363 

91 

87 

91 

92 

79 

836 

836 

836 

836 

836 

43 

42 

42 

29 

52 

1472 

1703 

1461 

2632 

825 

535 

518 

518 

134 

880 

 

 

Table 6  Uncertain CO2 tax rate. Use of energy (Mtoe) in 2030.  

 Households Industry Power generation Total 

Natural gas 

   Deterministic 

   Stochastic 1 

   Stochastic 2 

   MC 1 

   MC 2 

 

173 

178 

158 

192 

150 

 

108 

110 

100 

131 

90 

 

120 

121 

131 

68 

166 

 

401 

409 

389 

391 

406 

Steam coal 

   Deterministic 

   Stochastic 1 

   Stochastic 2 

   MC 1 

   MC 2 

 

3 

4 

3 

4 

3 

 

11 

19 

9 

18 

9 

 

252 

294 

179 

541 

26 

 

267 

318 

190 

562 

37 
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Monte Carlo 

Surprisingly, total investment in electricity production capacity does not differ between Monte 

Carlo 1 and 2. This reflects two counteracting factors: On the one hand, under Monte Carlo 2  

production of electricity (in 2030) in fossil fuel plants that existed in 2000 (“old” plants) is 

roughly half of the production under Monte Carlo 1 – this simply mirrors the difference in the 

carbon tax between Monte Carlo 1 and 2 (no carbon tax vs. 90 USD/tCO2). A small production 

of electricity in old fossil fuel plants in Monte Carlo 2 tends to increase the price of electricity, 

thereby providing an incentive to expand the electricity production capacity. On the other hand, 

the high carbon tax in Monte Carlo 2 will lower demand, thereby making it less profitable to 

invest. By chance, the net effect of these two factors is zero when Monte Carlo 2 is compared to 

Monte Carlo 1. In both cases investment amounts to 365 GW, but the composition is different: 

Under Monte Carlo 1 new renewable electricity capacity amounts to 31 GW (260 GW under 

Monte Carlo 2), whereas new fossil fuel electricity capacity amounts to 334 GW (105 GW under 

Monte Carlo 2).    

Under uncertainty, investment in coal power, gas power and wind power are close to the Monte 

Carlo averages, and total investment under uncertainty is only two percent lower than the Monte 

Carlo average. Hence, the averages of the Monte Carlo simulations provide good estimates of 

investment under uncertainty.    

Table 4 shows that investment in international electricity transmission capacity is lower under 

uncertainty than the average Monte Carlo investment. The high Monte Carlo average reflects 

substantial investment in Monte Carlo 2, where numerous wind power stations are set up, 

particularly in Scandinavia, accompanied by investment in international electricity transmission.  

As stated above, new electricity production capacity does not differ much between the Monte 

Carlo level (365 GW) and the outcome under uncertainty (360 GW). Still, the difference in 

production of electricity is significant. If there is uncertainty about the carbon tax and it turns out 

(in 2030) that no tax is imposed (“Stochastic 1” in Table 5), then total production of electricity is 

roughly 10 percent lower in Stochastic 1 than in Monte Carlo 1. The reason is that the 

composition of electricity capacity is significantly different in the two cases: In Monte Carlo 1, 

most of the new capacity is fossil fuel based, which has a maximum rate of utilization of 90 
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percent. In Stochastic 1, around one third of the new capacity is found in wind power, which has 

a maximum rate of utilization below 40 percent.  

Similarly, if there is uncertainty about the carbon tax and it turns out that a 90 USD/tCO2 tax is 

imposed (“Stochastic 2” in Table 5), then total production of electricity is roughly 5 percent 

higher in Stochastic 2 than in Monte Carlo 2. Again, the difference reflects the composition of 

new electricity production capacity: in Monte Carlo 2, there is no investment in coal power, but 

substantial investment in wind power (which has a low rate of utilization).  

Average electricity production under uncertainty is almost 5 percent below the Monte Carlo 

average, whereas it is almost 10 percent above the production level in the deterministic outcome. 

Hence, the Monte Carlo average provides a better estimate of the outcome under uncertainty than 

the deterministic outcome. This reflects the benefit of using the scenarios in stead of applying the 

expected value when one falsely assume there is no uncertainty.  

We now turn to Table 6, which provides information on use of natural gas and steam coal (in 

2030) by sectors (households, industry and power generation) in the five cases. If it turns out that 

no tax is imposed, then use of natural gas in power generation is almost twice as high under 

uncertainty (Stochastic 1) than under Monte Carlo 1. If the tax turns out to be 90 USD/tCO2, use 

of natural gas in power generation is roughly 25 percent lower under uncertainty (Stochastic 2) 

than under Monte Carlo 2. However, on average total use of natural gas under uncertainty and in 

the Monte Carlo simulations are almost equal.  

For steam coal, total use is almost twice as high in Stochastic 1 than in Stochastic 2, whereas total 

use of coal is almost 15 times higher in Monte Carlo 1 (no carbon tax) than in Monte Carlo 2 (90 

USD/tCO2); there is no investment in coal power in the latter case, see discussion above. Thus, 

the outcome in Monte Carlo i, i=1,2, are poor estimates for the outcome in Stochastic i, and the 

average values under uncertainty and Monte Carlo differ by as much as 20 percent.    
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5 Conclusions 
The stochastic scenario method can be used to solve numerical equilibrium models with several 

agents simultaneously maximizing their payoff under uncertainty. The method has been 

implemented in a stochastic version of LIBEMOD, a numerical multi-market model of the 

European energy market. We find that replacing the uncertainty with the expected value, which 

in the paper was referred to as the deterministic outcome, leads to large deviations from the 

optimal solution under uncertainty. Monte Carlo simulations that apply the same scenarios as the 

ones used when solving for the optimal solution under uncertainty, approximate the optimal 

solution much better, at least for aggregate numbers. 

 The current version of LIBEMOD is not dynamic, but by imposing investments to be the 

same in all scenarios while energy use is scenario specific, we impose a structure where 

investments are decided before the uncertainty is revealed while use is decided after the 

uncertainty is revealed. Our approach can be extended to dynamic multi-period models with 

learning. The information available in different periods would then be represented by partitions 

of the set of scenarios; the decision makers in a period do not yet know the exact scenario that 

will materialize in the future, only which subset the true scenario will belong to. Typically, 

decisions made in the first period will have to be the same in all scenarios, while decision in a 

later period will be the same within a subset of scenarios, but different across subsets. In the last 

period the exact scenario will be known. Learning is represented by the gradually finer partition 

of the set of scenarios.   

 We can also account for risk aversion, either by assuming that investment is decided by 

the firms’ owners who are diversified in the financial market, or that investment is decided by 

risk-averse managers. In the first case, probabilities are replaced by weights derived from the 

prices of Arrow securities, that is, contingent claims that pay 1 $ if a particular scenario 

materializes. After replacing probabilities with normalized prices of contingent claims, all agents 

will behave as if they were risk neutral. Risk aversion will be reflected in the prices on contingent 

claims. This approach is similar to the use of equivalent martingale measures in finance (Harrison 

and Kreps, 1979, Duffie, 1996).  With risk averse manager a similar approach can be used, but in 

this case the scenario-weights will be firm specific, and thus some modest changes in the first-
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order conditions would be required.7

  

  

                                                           
7 More details on how to account for risk aversion and to extend the method to cover dynamic models can be 
obtained from the authors upon request. 
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