

Sustainable biofuels for aviation

Berta Matas Güell, Senior Researcher SINTEF Energy Research, Brussels office Sustainable jetfuel for aviation – Nordic perspectives on the use of advanced jetfuel for aviation

- Development process for sustainable jetfuel in the Nordic countries
- Contribution to GHG reduction and mitigation
- Current policies at Norwegian and EU level
- Promising technological pathways for production of sustainable jetfuel
- Norwegian initiatives for biofuels production and use
- Summary

Development process for sustainable jetfuel in the Nordic countries

- Sustainable criteria
 - Greenhouse gas emissions
 - Direct and indirect land-use change
 - Nutrients
 - Pesticides
 - Biodiversity
 - Water usage
 - Generations of feedstock and biofuels

Sustainability criteria – Greenhouse gas emissions (GHG)

- Non-CO₂ emissions at high altitute contribute significantly to globar warming
 - NO_x
 - Associated with combustion processes at high temperatures contribution to ozone formation at lower atmosphere
 - Destroy methane in the atmosphere
 - Methane
 - Associated with agriculture and anthropogenic sources
- CO₂ emissions
 - Primary anthropogenic sources (combustion of fuels)
 - Combustion of biofuels is only CO2 neutral when using annual plants; use of biofuels is not CO2 neutral (GHGs associated with harvesting, processing, transport, use of non-annual plants)

Sustainability criteria – Direct and indirect land-use change

• Land use change (LUC)

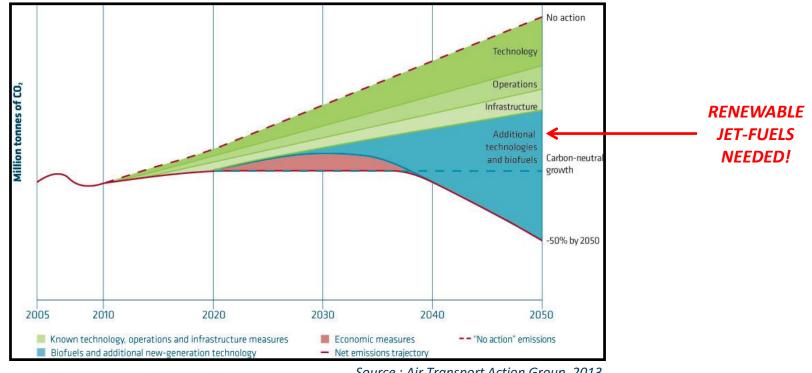
- Net increase in CO₂ emissions due to a decrease of carbon storage in the land as a result of a decrease of carbon rich vegetation (e.g. from forests to fields)
- Indirect land use change (iLUC)
 - Net increase in CO₂ emissions due to a shift in the use of a crop (e.g. from food to feedstock, with possible displacement of food production to other LUC-land areas)

SINTEF

Sustainability criteria – Others

- Nutrients
 - Potential for eutrophication if P and N are leached from fields into lakes and streams
 - Recirculation of nutrients important when selecting feedstock and technological pathways
- Pesticides
 - Used to protect crops from pests; provide benefits such as improved crop yields and quality.
 - They have adverse effects on the environment and human health
- Biodiversity
 - Possibility to harm the ecosystem when utilizing land areas for feedstock
- Water usage
 - Important to consider both amount of water used in the production of biomass and the quality of water
- 6 resources

Sustainability criteria – Generations of feedstock and biofuels


• 1st generation (1G): Food and feed crops

- Feedstock competing with food production (rapeseed, sugarcane, palm oil, maize,...)
- 2nd generatoin (2G, advanced biofuels): Lignocellulosic and waste materials
 - Exhibit zero (or low) LUC impacts (residues from agriculture and forestry, MSW,...)
- 3rd generatoin (3G): Micro-, macroalgae and engineerd feedstocks
- 4th generation (4G): Algae, microorganisms and microbes, which absorbed and convert CO₂ to biofuels

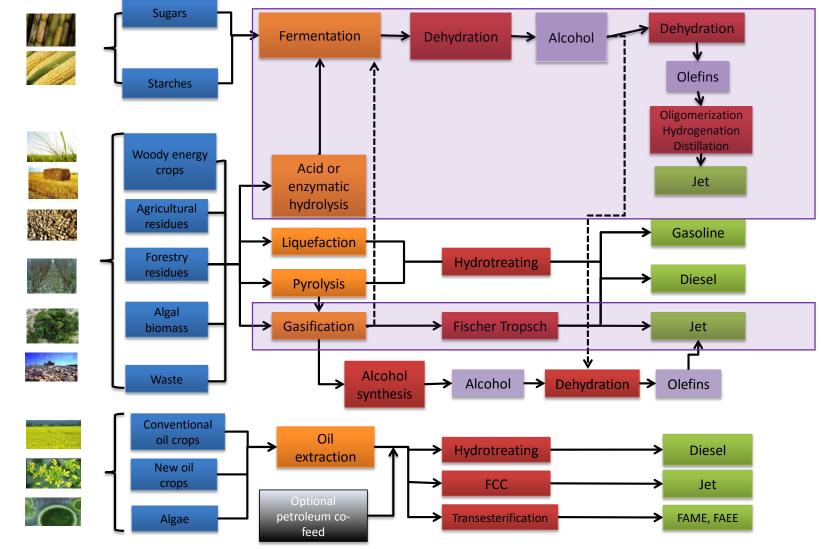
Contribution to GHG reduction and mitigation

Source : Air Transport Action Group, 2013

- Improve fleet fuel efficiency by 1.5% per year from now until 2020
- Cap net emissions from 2020 through carbon neutral growth
- Halving net CO₂ emissions by 2050 based on 2005 emissions

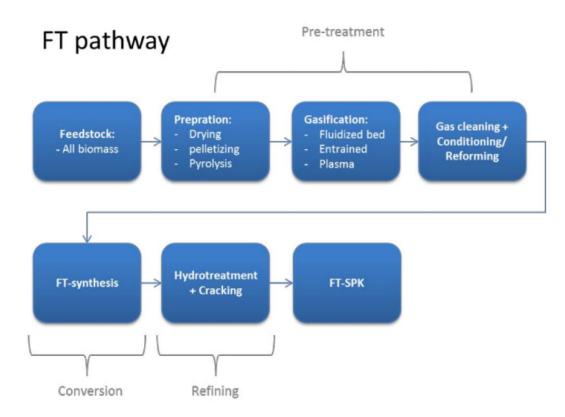
Current policy frameworks - EU

- The <u>European Emission Trading Scheme (EU ETS)</u>
 - System of tradable allowances for companies, covering ~45% of the EU's GHG emissions
 - Each allowance gives the right to emit 1t CO₂ or the equivalent amount of N₂O and PFCs
 - "Cap and trade" principle; cap reduced over time, in alignment with the overall GHG targets of the participating partners
 - Aviation included since 2012: emissions from, to and within the European Economic Area (Norway included)
 - In the aviation sector, the cap has been provisionally set at 210 million aviation allowances per year
 → 5% below the average annual level of aviation emissions in the 2004-2006 base period.
 - The ETS carbon price was EUR 9/ton CO₂ in 2015. As of June 2016 it is EUR 6/t CO₂ (~10% of the current price of fossile jetfuel) → far below what is needed to incetivise emissions cuts


Current policy frameworks - Norway

- Norway has a target of a 67.5% share of Renewable Energy Sources (RES) of gross final consumption of energy by 2020, including a 10% share of RES in energy for transportation
- The <u>Norwegian Government</u> has just agreed on increasing the share of biofuels in diesel and gasoline from 5.5 to 7% in 2017 and it shall reach 20% by 2020. All biofuels sold in Norway should be sustainable.
- Biofuels are exempted from CO₂ tax. However the aviation sector is subject to CO₂ tax, landing charges and the EU ETS.

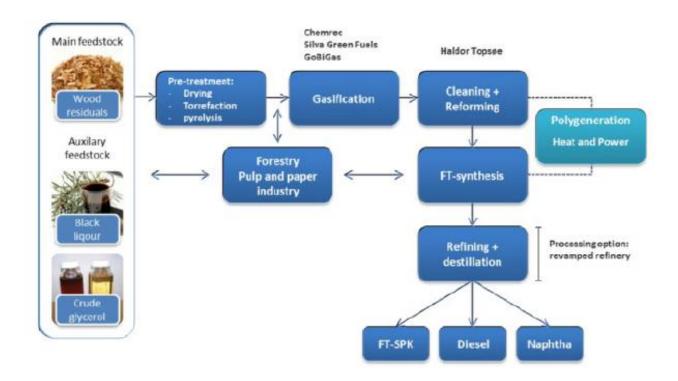
Promising technological pathways for production of sustainable jetfuel


SINTEF

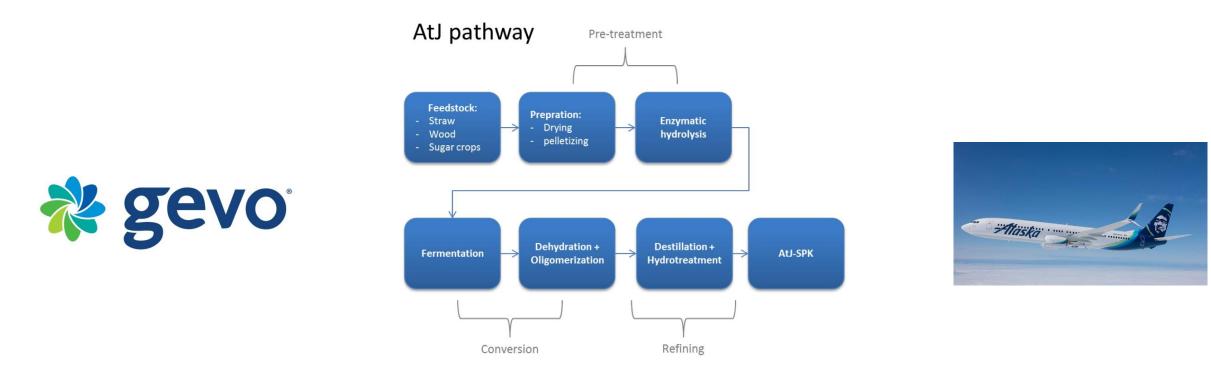
Promising technologies- certification of sustainable jetfuel pathways

Table 12: ASTM certification of sustainable jet fuel pathways

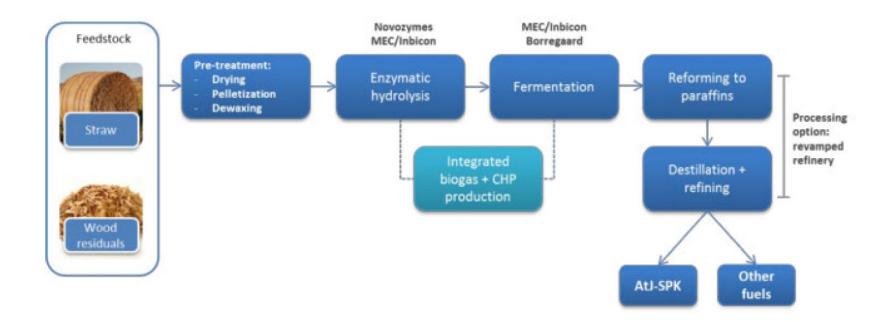
Pathway	Certification status	Feedstock
Fischer-Tropsch (FT)	✓ 50% blend	Any biomass or carbon source
Hydroprocessed esters and fatty acids (HEFA)	✓ 50% blend	Vegetable oils, animal oils, and any other bio-oils containing tri-glycerides
Synthetic Parafinic kerosene (SIP)	✓ 10% blend	Any sugar containing feedstock
Alcohol to Jet (AtJ) (BASED ON ISOBUTANOL)	✓ 30% blend	Any sugar containing feedstock
FT synthetic kerosene with aromatics (FT-SKA)	under review (100% blend)	Any biomass
Hydroprocessed depolymerized cellulosic jet (HDCJ)	under review	Lignocellulosic
HEFA+	testing (as annex to HEFA, around 10% blend)	Same as HEFA
HEFA+ AtJ synthetic kerosene with aromatics (AtJ-SKA)		Same as HEFA Same as AtJ
AtJ synthetic kerosene with	around 10% blend) testing	
AtJ synthetic kerosene with aromatics (AtJ-SKA)	around 10% blend) testing (100% blend)	Same as AtJ Vegetable oils, animal oils, and any other
AtJ synthetic kerosene with aromatics (AtJ-SKA) Catalytic hydrothermolysis (CH)	around 10% blend) testing (100% blend)	Same as AtJ Vegetable oils, animal oils, and any other bio-oils containing tri-glycerides
AtJ synthetic kerosene with aromatics (AtJ-SKA) Catalytic hydrothermolysis (CH) Hydrothermal liquefaction (HtL)	around 10% blend) testing (100% blend)	Same as AtJ Vegetable oils, animal oils, and any other bio-oils containing tri-glycerides Any biomass


Production of sustainable jetfuel – Gasification to Fischer-Tropsch

- The first technology to be certified for biojetfuel
- There is no commercial production of FT-SPK using biomass yet


Production of sustainable jetfuel – Promising scenario Gasification/FT

- Wood residues are largely available among the Nordic countries
- Close connection to the forestry and pulp-and-paper industry and infrastructure
- Technology and know-how within gasification


Production of sustainable jetfuel – Alcohol-to-Jet (AtJ)

- Technology expected to be certified in 2016
- Most promising pathway: biomass-sugars-isobuthanol-biojetfuel
- <u>GEVO</u> commercializes production of isobuthanol-based jetfuel from forestry residues. Alaska Airlines has successfully tested this jetfuel (first commercial flight to use a fuel blend made from woody biomass)

SINTEF

Production of sustainable jetfuel – Promising scenario AtJ

- Straw and wood residuals are largely available among the Nordic countries
- Nordic competences within hydrolysis and fermentation technologies

Norwegian initiatives for biofuels production and use

- Go Green End
- **Biozin**: production of biojetfuel, biodiesel and biogasoline from forestry biomass with own patented technology
- Treklyngen: 2 major initiatives for biofuels production
 - St1 and Cellunolix [®] technology: bioethanol from forestry biomass and waste
 - "Norwegian wood" with Elkem, Avinor and Vardar: production of biojetfuel
- Silva Green Fuel: production of biodiesel either drop-in or blend-in/co-refining
- Quantafuel: BtL as main focus with own Fischer-Tropsch technology and plastic waste as feedstock
- Avinor: From January 2016 OSL became the world's first hub to offer jet biofuel to all airlines on a commercial basis

Summary

- Sustainability criteria play a key role in biofuels deployment
- Need for long-term good policy frameworks
- Impossible to choose a winner technology
- High risk There is no commercial technology for production of advanced biofuels production...few good examples and many unsuccessful stories
- Up-scaling is costly (valley of death)
- Quite a few initiatives interest for production of biofuels from Norwegian biomass feedstocks

Teknologi for et bedre samfunn