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Abstract 
We analyse the standard optimal control fishery model and derive 
some novel results. We show that as long as it is not optimal to let 
the stock become extinct, there will always be an interval with low 
stock sizes where it is optimal not to harvest. This result does 
depend on any assumption that marginal harvesting cost per unit 
increases with decreasing stock size. This result is then used to 
prove that weak conditions the shadow price on the fish stock 
always goes to infinity as the stock approaches zero. The results 
are generalized to age structured models.   
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1. Introduction 

Clark (1973) and Clark and Munro (1975) presented dynamic fishery models that gave the 
theory of renewable resources a proper capital theoretic foundation. The basic fishery model 
entails one control variable, one state variable; the planning horizon is infinite time and the 
problem is autonomous. When the profit function is nonlinear in the control variable and there 
is an optimal path to the steady state, this steady state should be approached gradually along 
two saddle paths, or stable manifolds (see, e.g., Kamien and Schwarz 1991). The standard 
model has usually applied a ecological lumped parameter model of the form  x G x h   

where x is biomass and h is the harvest rate. It has been recognized for a long time that 
optimal extinction in these models depends on the relative magnitude of the interest rate and 
the intrinsic growth rate,  in addition to the unit cost of harvesting,  Clark (1973), 

Cropper (1979). Although this model is well understood, some wrinkles remain to be ironed 
out. One is the question of harvest levels at low stock levels. It is has been known for a long 
time that in the standard fisheries model it is optimal to set harvest equal to zero for low stock 
levels, Leung and Wang (1976), Lewis and Schmalensee (1977). This is commonly attributed 
to an assumption that harvests costs are stock dependent and that the marginal cost of harvest 
becomes very large or infinite when the stock goes to zero. We show below that this is not a 
necessary condition. In order to properly analyse optimal harvest levels at low stocks, it is 
crucial to examine the behaviour of the shadow price at low stock levels. We argue below that 
analysing the properties of the shadow price at low stock levels is equivalent to analysing the 
stable saddle path in a phase diagram in stock/shadow price space. We then show that the 
shadow price of a renewable resource goes to zero if the growth in the resource is zero at zero 
stock. This fact has remarkably not been noted in the literature. Colin Clark in his milestone 
book on natural resource economics is silent on this. He draws the basic fishery model phase-
diagram in the stock – harvest space, but the saddle path illustration is not finalized when the 
harvest becomes low (Clark 1990, p. 99). See also Conrad and Clark (1987, p. 56). In the 
well-recognized book by Leonard and Long on optimization and dynamic control models, the 
saddle path illustrating a schooling fishery is only indicated for a restricted set of values in the 
stock – shadow price space (Leonard and Long (1992, p. 296) and is not drawn for values of 
the stock close to zero... 

 0G

 
In what follows, we first formulate and analyse our baseline model exemplified by a 
schooling fishery with a fixed harvest price. We apply fast/slow-dynamics and show that the 
results apply to at least some age structured models.   
 

2. The baseline model 

The following is the basic version of the fisheries model where a schooling fishery is 
considered. In a schooling fishery there are no stock dependent harvest costs, and with a fixed 
fishing price p  the problem is accordingly: 
 

 , (1)       
0

0

max subject to ,and 0 givent

h
ph C h e dt x G x h x





   

 
and where  is the harvest and  is the size of the fish stock, and  is the 
discount rate. The natural growth function G(x) is assumed to be strictly concave and satisfy 
G(0) = 0,  over some interval [0,

0h 

'( )G x 

0x  0 

0 x  ) and   0G x   for x > x . It is also assumed 

that there is som  number e K x  such that G(K mptions are in lin ith the ) = 0. These assu e w
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standard logistic growth function, which is used in our numerical illustrations.  The cost 
function C(h) is assumed to be increasing, convex and satisfy  0 0C  . For notational 

convenience we denote  C h  as c(h).  

 
The current value Ham or this problem is: iltonian f

     G x hH ph C h   . (2) 

he Hamiltonian is co  (h, x), so sufficiency theoreT ms such as Theorem 9.11.1 in ncave in
Sydsæter et al. (2005) are fulfilled. The necessary conditions become: 
 

   0 0 if 0
H

p c h h
h




        (3) 

and  
  G x    . (4) 

ransversality conditio also be checked, which

ontrol condition (3) m itten as: 

T  is done below.  ns must 

ay be rewr
 
C

  10,c pmaxh   , (5) 

nd implies that with p  h = 0. Inserting from Eq. a (5) into the growth equation yields  < m 
next: 

     1max 0,x G x c p   . (6) 

e can use Eqs. (4) and  to obtain a phase diagram in the (x,  e for 
 

x(6) )-space. The isoclinW = 

 

0 may be constructed as follows: 

    

     

1max 0, 0

: 0

G x c p

x p c G x x h

  

    



x 


line fo

 

) = p  and

 (7) 

Note that (0) = (K  that (x) < p for all x (0, K). The isoc r = 0 is given 

 


by: 

 

 1

0

0 or 

G x

x G 

    

  






 (8) 

 
e shall assume that there is a pair (xss, ss) that solves the equa  and  and tions 0x 

s in 
W 0 

d (8)hence define the equilibrium (steady state) of our model. The isocline (7) an  are 
depicted and discussed in Figure 1 where we illustrate two possible paths for a stable 
manifold when x is lower than its steady state value. This entails one path where the stable 
manifold lies below the line  = p except at (x, ) = (0, p) where they intersect and a second 
possible manifold which crosses the line  = p at some stock value in the interval (0, )ssx . 

There can only be one stable manifold, so we have to choose between them. This is done in 
Proposition 1.  
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Figure 1. Isoclines in a phase diagram in the (x, )-space. The isoclines at x = 0, x = K and μ = 0 are not 
drawn. The black arrow indicates system directions of the isoclines. The star indicates the steady state 
point (xss, μss) that solves the equations dx/dt = 0 and dμ/dt and it follows from the directions of the black 
arrows crossing the isoclines that it is a saddle point as expected. Lines with arrows indicating directions 
are possible stable manifolds. For values of x below the steady state there are two possibilities. One where 
the stable manifold lies starts above the  = p line, and one where the entire line lies below the  = p line. If 
this last possibility is the case, the stable manifold must start at the point (x, ) = (0, p). Proposition 1 
shows that this is impossible, so the stable manifold must start at some point where  > p.  
 
 
 
 
Proposition 1. 
Any path originating from (x, ) = (0, p) can not be a stable manifold.  
 
Proof: The slope of the stable manifold at (x, ) = (0, p) is given by: 

 

    
  

    
  

 

, 0, 1

0

0 max 0,

0

0

x p

p G
d dx x

G c p

p G

G

  

 
   

 

 
  

 
p

 (9) 
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This holds under our assumption of an intrinsic growth rate (0)G   that exceeds the rate of 
discount, and . This slope is clearly smaller than the finite slope of the isocline for (0) 0G 
x = 0, so a stable manifold would enter into the area below the isocline for x = 0, which 
implies that the stable manifold cannot go through the steady state.  

 
 
 
Proposition 1 has a powerful implication that we sum up in a proposition although the proof is 
very simple. 
 
Proposition 2. 
There exists a non-empty interval [0, x*] where it is optimal to set h = 0.  
 
Proof: It follows from Proposition 1 that there exists a stock level x* where the downward 
sloping stable manifold crosses the line  = p , and therefore h = 0 for all x [0, x*]. 
 
In Nævdal (2016) it was proven that if revenue is linear in harvest, the shadow price would go 
to infinity as the stock approaches zero. The proof of this result hinged on the harvest rate 
being zero if stocks are below the steady state level. Proposition 1 above implies that the 
proof in Nævdal (2016) may be generalized to the case where harvest costs are strictly convex  
and also in this more general case, the shadow price will go to infinity as the stock approaches 
zero. This is done in Proposition 3. Proposition 3 thinks of the stable manifold in a slightly 
unusual manner. The stable manifold is a continuous mapping from x to  and it thus makes 
sense to think of  as a function of x. We can then use the ratio x   and steady state 
conditions to construct a differential equation with boundary conditions (Judd 1998, Ch.10.7). 
 
Proposition 3. 
Along the stable manifold  0

lim 0
x    holds. 

 
Proof: Let (xss, ss) be the known steady state level of the optimally managed system defined 
by problem (1). Over the interval [x*, xss] one can find the stable manifold by solving the 
differential equation: 

 
 

   1

d
,

d

G x

x x G x c p

  
 

 



 

with the boundary condition ss = (xss). By Proposition 2 there exists an x* such that (x*) = 
p. One can therefore find the solution for μ(x) over the interval [0, x*] by solving the 
following differential equation: 

 
 

   d
, *

d

G x
x p

x x G x

  
   



. 

Nævdal (2016) showed that this equation has the solution: 

    
   

**
exp

x

x

pG x
x d

G x G

 
     

 



 (10) 

and that . The proof is reproduced in the in the Appendix.    0
lim

x
x  

 
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Figure 2. Computer generated phase diagram for the model in Equation (1). Note that  along the stable 
manifold increases as x goes to zero. It does in fact go to infinity. It crosses the line h(x,) = 0 at x*. From 
(5) it should be clear that h(x,) = 0 implies that  = p at x*. Thus at all x  x* it holds that h = 0. The 
stable manifold is in fact the derivative of the value function. As V(0) = 0, the area under the stable 
manifold is therefore the value function. The shaded area shows V(x*), which is the value of the fishery at 
the stock level x*. Although Propositions 1-3 hold for general growth and cost functions with the 
properties stated above, the graph is drawn using a logistic growth function G(x)=rx(1 – x/K) with K = 10 
and r = 1, and the current profit function ph - C(h) = 5h – ½h2.  The discount rate has been set to  = 0.05.  
 
 
Propositions 1, 2 and 3 enables us to draw the more complete phase diagram, depicted in 
Figure 2. It is worthwhile to note that as the stable manifold entails the allowable 
combinations of x and  along an optimal path, it may in fact be interpreted as a function (x) 
that gives the derivative of the value function, ( ) ( ) /x V x x    . As the value function V(x) 
clearly must satisfy V(0) = 0, the value function can be demonstrated in the phase diagram as 
the area below the stable manifold as indicated by the shaded area in Figure 2.  
 
 
 

Downward sloping demand curve 
Above it was assumed that the unit fish price was fixed. If we introduce a downward sloping 
linear demand curve, we find that this yields very much the similar solution as the situation 
when the price is fixed. Indeed, in a model with costless fishing and a linear demand curve 

( )p h a b  h , with the choke price  and , the analysis will be identical, but where 
the choke price replaces p.  

0a  0b 

 
With costs included, the current profit writes[ ( ) ( )]p h h C h . Under monopolistic exploitation, 
the control condition (3) is now replaced by:  
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    '( ) ( ) 0 0  0H h p h h p h c h if h           

 This implies  0 0p      which also has identical structure to the model analyzed 

in section 2. The same will be the case when we imagine a social planner maximizing the 
present-value sum of consumer surplus and producer profit. The control condition reads then 

0h 

 ( )h c h   0 0H h p h   0  if  which also implies  0 0p     . 0h 
 

Positive and finite marginal cost at zero harvest, c(0) > 0.  

In the baseline model analysed in section 2, the proof was based on there being a single point 
at x = 0 where the stable manifold could cross the -axis if the stable manifold did not lie 
above the line  = p. If instead c(0) > 0 and finite, there is in fact an interval on the  -axis 
where the stable manifold could start. This interval is given by (p – c(G(x), p).  If the stable 
manifold actually does origin from this interval, it would imply that an increase in marginal 
cost would increase harvest levels for low stock values, something that must be considered a 
contradiction. A definite proof is given in Proposition 4.  
 
 
Proposition 4.  No stable manifold can start in the open interval (p – c(G(x), p) on the -axis.  
 
Proof: If the stable manifold starts in the open interval (p – c(G(x), p), then h = 0. But then, 
using techniques used in Proposition 3, one can show that  0

lim 0
x     which is a 

contradiction. 

 

 

3. Age structured models 

We now examine age structured models in order to see if the results from above carry over. In 
particular, we want to check whether the shadow price goes to infinity as the stock approaches 
zero, and whether this also implies that no harvesting will occur at low stock levels.  
 
Recent years have seen increased interest in age structured models and the implications of 
dropping lumped parameter models (see, e.g., Tahvonen 2009, and Skonhoft et al. 2012). 
Typically, the cohort length of a fish stock is measured in years as the relevant time scale 
piscine reproduction usually occurs one a annual basis. This would require a biological model 
with several cohorts with year-class specific contribution to recruitment and year-class 
specific natural survival as well as harvest rates. Indeed, cohort models quickly become 
analytically intractable. Here we first analyse two simplified cases. One case where the adult 
period is relatively short compared to the time span of a young animal. This may correspond 
to e.g. salmon where most of the species’ life history is in the native river (2-4 years) before 
migrating into the ocean and spending 1-3 year there before  returning back to spawn in its 
native river. After spawning it dies (about 90 %). It is only at the end of this last period that 
salmon are harvested in significant numbers. The second case we analyse is where the period 
as a young is short relative to the time (potentially) spent as an adult. This may correspond to 
e.g. pelagic cod which only becomes old enough to be harvested and spawn at the age of 3 
years and may live to become more than 20 years old.  In these two particular cases we can 
use the differences in the time span of cohorts to utilise slow/fast-dynamics in order to 
simplify the analysis, Crépin (2007), Guttormsen et al (2008). Based on these examples we 
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examine a very simple age structured model with two cohorts, young, x, and adult, y. It is 
assumed that only adult fish are harvested. The equation of motion for young fish is assumed 
given by: 

 1
    
 

 x
x ry x

K
 (11) 

Larvae production is proportional to the stock of adults, but survival is density dependent. A 
fraction  enters the stock of adults every unit of time. The stock of adults grow according to 
     y x y h   (12) 

Here  is the natural mortality rate and h is harvesting. In the absence of harvesting one can 
show that the steady state is given by: 

 
 K r

x
r

 
 and 

 K r
y

r

  



. (13) 

 
Positive steady state levels without harvesting require r >  which is assumed. Also, in order 
to simplify the analysis it is assumed that instantaneous profit from harvesting is given by ph 
– ½kh2 where the fish price p  and the effort cost parameter k is now are related to effort 
levels.   
 

Salmon 

Since salmon is characterised by a long period as young before experiencing a short period as 
adult and dying after spawning, we can treat x as a slow variable and y as fast variable. The 
implication of y being a fast variable is that y moves very quickly from one steady state to 
another relative to x. The most straightforward way to model this is to let movement from one 
steady state to another be instantaneous implying that y = 0 or (1/ ) y x h    from Eq. 

(16). Inserting into Eq. (11) gives then: 

    ( / ) 1 , 0  given.
x

x r x h x x
K

       
 

  (14) 

   
With our profit function, the management problem is then to maximise (1) subject to (14). 
The Hamiltonian for this problem is: 

  2 ( / ) 1
2

k
H ph h r x h x

K

              

x 
  (15) 

  
Necessary conditions for optimality include: 

    
, max 0,

r K xp
h x

k k K

  
    

 (16) 

and  

 
     , 2h x r K r rx

K

   
  








 . (17) 

 
Note that the expression for   depends on h. Thus when calculating    one must be careful to 

insert h = 0 whenever prescribed by  and x.  The boundary between values of x and  where 
h > 0 and h = 0 is given by: 
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 

0
p K

h
r K x


   


 (18) 

Given our assumptions, there are three possible steady states. If r/ is sufficiently high, there 
is a steady state with  = 0, h = p/k. This only applies when the growth of the fish stock is so 
robust that capital theoretic considerations do not apply and will not be analysed further. 
These steady states are given by: 

 
   2 2 2 24 2 4

,
2low low

K r r K r r
h x

r r

              
 


 (19) 

 
   2 2 2 24 2 4

,
2

     
 high high

K r r K r r
h x

r r

         


  (20) 

Steady state expressions for  may also be computed, but are too complicated to be 
informative. It should be clear from (19) and (20) that xlow < xhigh. Further, in order for steady 
states to be positive we must have that 
   r     

 
We can use these conditions to draw a phase diagram. This is done in Figure 3 and discussed 
in the caption.  
 

 
Figure 3, Phase diagram for cohort fishery with fast slow dynamics. At x = x*, the stable manifold crosses 
the h = 0 boundary. Thus if x < x* it is optimal to set harvest levels to zero. This implies that Proposition 3 
applies also in this case and limx↓0 = .  
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Cod 

Here it is assumed that it is y that is the slow variable and x that moves instantaneously from 
steady state to steady state. Therefore we set x = 0 and obtain: 

 





Kry

ry K
x  (21) 

Inserting Eq, (24) into the expression for y implies that Eq. (12) may be written as: 

 


  
 

 Kry
y h

ry K
y . (22) 

 We may then formulate the current value Hamiltonian:  

 2

2

dKry
y h

d r

k
p h

y
H h

K


 
  




 


 . (23) 

 
Using standard techniques we may then calculate the steady state that follows from using 
optimal policy:  

 
2 2 3 2 2 3

2 2

( )( ) (2 ) ( ) ( ) (
,

( ) ( )SSS S

Kr r K r K r Kr
y

r
h

r

                


 



 

 )
 (24) 

 
It is straightforward to show that these expressions are positive as long as r –  > . One can 
also here draw a phase diagram, but it turns out to be almost identical to Figure 2 and is 
therefore omitted. Therefore, the main conclusions from Figure 2 carry over, namely that 
there exists a x* such that h is zero for x  x* and that the shadow price also in this case will 
go to infinity as x approaches zero. 
 
Both our cohort models are variations over the same underlying cohort structure. The results 
are the same. The shadow price goes to infinity for low stock levels and therefore there is 
some lower bound on stock levels where harvest rates are zero. Thus we confirm analytically 
numerical results from e.g. Tahvonen (2008) and Skonhoft et al (2012) who find zero 
harvesting at low levels. 
 
 
Numerical analysis when dynamics is on the same time scale. 
In order to demonstrate that zero harvest for low stocks is not an artefact of choosing 
slow/fast-dynamics we also present a numerical analysis where the model with population 
dynamics given by (11) and (12) are assumed to be valid on the same time scale. This is done 
in Figure 4 and discussed in the caption. 
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Figure 4. The solution to (1) when population dynamics are given by (11) and (12) can be found through 
dynamic programming as a feedback control where optimal harvest rate can be written as a function of x 
and y. The figure shows those values of x and y where optimal harvest is zero. For low values of x and y the 
shadow price of y is sufficiently high that it is optimal harvest is zero. The plot is generated using C(h) = 
½ch², p = 10, c = 1, r = 1, K = 10,  = 0.05,  = 0.5 and = 0.2. 
 
 
 
4. Concluding remarks 
In this paper we have examined the basic nonlinear control variable fishery model originating 
from Clark and Munro (1975), and demonstrated under what circumstances it is optimal to 
stop harvesting when the stock becomes sufficiently low. The main assumptions in our 
modelling are that the intrinsic (maximum) growth rate of the fish stock exceeds that of the 
discount rent, that the growth of the fish stock is zero when the fish stock is zero and that the 
marginal net benefit is finite for all harvest levels, and particularly for zero harvest  
 
The paper provides four Propositions and these enable us to draw a more complete phase 
diagram than what is found in, among others, Clark (1990) and Leonard and Long (1992). 
The most important of these propositions from a management perspective, is that it always 
exists a strictly positive stock level below which it is optimal with no harvest. This is perhaps 
not too surprising. If the value of fish stock grows faster in the ocean than it does in the bank, 
we would prefer to have the fish staying in the ocean until it has grown to the point where the 
return in the ocean is equal to returns in the bank. The non-negativity constraint on harvesting 
implies that we cannot put fish into the lake. However, the fact that optimal harvest levels is 
always zero for low stock levels also imply that the shadow price of the stock will always go 
to infinity as the stock goes to zero. This was proved for a simple  model with harvesting cost 
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depending on the harvest only, but  showed through numerical examples that it also applies to 
age structured fisheries. 
 
It is also demonstrated how the value function may be illustrated in the phase diagram. Our 
basic model is formulated for a schooling fishery. Stock dependent costs as well as some 
other extensions are also included in the analysis.  
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Appendix 

The solution to the differential equation in Proposition 3.. 

Dividing the differential equation by m and integrating over  , *x x  gives: 
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Inserting for  *x p   and rearranging gives the expression for  x . 
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This solution is only valid over the interval (0, x*]. Note that the integral in this expression 
converges, (0) is clearly infinite. If the integral does not converge, the expression is on the 
form “0/0” and must be evaluated with L'Hôpital's rule.  
 
Calculating (0) 
Applying L'Hôpital's rule yields 
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The last line implies that: 

      
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lim lim
0x x
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This can only be true if (0) = 0 or (0) = . But because 0   in a neighbourhood around x 

= 0 and G(x) > 0 it must be true that for x close to zero   0x x     , which implies that 

(0) = . 
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