
 

Stiftelsen Frischsenteret for samfunnsøkonomisk forskning

Ragnar Frisch Centre for Economic Research

Working paper   
2/2012 

  

 
 

  

   

  

A Faster Algorithm for 
Computing the 

Conditional Logit 
Likelihood

 
Simen Gaure 

 

 

 



 
Working paper 2/2012 
  

 
 
 
 
 
 

 

  
A Faster Algorithm for Computing 

the Conditional Logit Likelihood  
 

 

  Simen Gaure  
    
    
    
    
 
 
 
 
 

  

Abstract:  It is shown that the conditional logit likelihood can be 
computed in a reasonable time. By this we mean that if T is the 
number of periods, n is the number of successes, then the 

likelihood for an individual superficially requires 
T

n
n

   
 

 

steps, but we show that it can be done in nT steps. 
This was thought be new, but the method is described in the 
“Methods and Formulas" section in the Stata clogit manual 
Though, Stata's implementation is unusably slow for datasets of 
our size, which contains about 2 million observations with about 
800 independent variables. Each “individual" has 2-7 positive 
observations out of 15. 

 

     
   
     
Contact:   www.frisch.uio.no 
     
     
Report from the project “Social Insurance and Labor Market Inclusion in Norway” 
(202513), funded by the Norwegian Research Council. 

 

  
ISBN 978-82-7988-109-4 
ISSN 1501-9241 

 

 



A Faster Algorithm for Computing the

Conditional Logit Likelihood

Simen Gaure

Abstract

It is shown that the conditional logit likelihood can be computed in a
reasonable time. By this we mean that if T is the number of periods, n is
the number of successes, then the likelihood for an individual superficially
requires ≈ n

(
T
n

)
steps, but we show that it can be done in ≈ nT steps.

This was thought be new, but the method is described in the “Meth-
ods and Formulas” section in the Stata clogit manual Though, Stata’s
implementation is unusably slow for datasets of our size, which contains
about 2 million observations with about 800 independent variables. Each
“individual” has 2-7 positive observations out of 15.

1 Introduction

Following [Wooldridge(2002), 15.73], the conditional logit likelihood for an in-
dividual is

Li(β) =
exp(

∑
t∈Yi

xit · β)∑
a∈RTi

ni

exp(
∑

t∈a xit · β)
(1)

where β = (β1, . . . , βK) is a parameter vector, xit = ((xit)1, . . . , (xit)K) is a
vector of covariates for period t. Ti is the number of observations for this
individual, Yi is the set of positive observations, ni = cardYi is the number of
positive observations, and Rm

j = {a ⊂ {1, . . . ,m} : card a = j} is the collection

of all subsets of {1, . . . ,m} with j elements. Thus, we have Yi ∈ RTi
ni

, hence
0 < Li < 1. (Strict inequality because trivial individuals (all or none positive
observations) have been eliminated from the dataset.)

Since we are only considering a single individual here, we drop the i subscript
and use the formula

L =
exp(

∑
t∈Y xt · β)∑

a∈RT
n

exp(
∑

t∈a xt · β)
=
C

D
(2)

where we have named the numerator and denominator C and D.
This is a straightforward likelihood, the only obstacle being the size of the

RT
n in the denominator. There are

(
T
n

)
terms in the outer sum, each term is an

exp of an n-length sum. We thus have to do ≈ n
(
T
n

)
arithmetic operations.
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The sum in the denominator makes the model intractable for anything but
small T and n. We show that the denominator can be computed with less effort.

2 A recurrence relation

Let ht = exp(xt · β). The denominator D in (2) can now be rewritten

D =
∑
a∈RT

n

exp(
∑
t∈a

xt · β) =
∑
a∈RT

n

∏
t∈a

exp(xt · β) =
∑
a∈RT

n

∏
t∈a

ht (3)

For 1 < j < m, remember the defining relation of Pascal’s triangle ([Pascal(1654)]):(
m

j

)
=

(
m− 1

j − 1

)
+

(
m− 1

j

)
,

a formula which reflects the underlying disjoint union of sets:

Rm
j = {{m} ∪ a : a ∈ Rm−1

j−1 }
⋃
Rm−1

j .

We split the last sum in (3) accordingly, i.e. one part with T ∈ a, the other
with T /∈ a:

D =
∑
a∈RT

n

∏
t∈a

ht = hT
∑

a∈RT−1
n−1

∏
t∈a

ht +
∑

a∈RT−1
n

∏
t∈a

ht. (4)

Now, if for arbitrary j,m with 1 ≤ j ≤ m ≤ T we write

zmj =
∑

a∈Rm
j

∏
t∈a

ht

we can write (4) as
D = zTn = hT z

T−1
n−1 + zT−1n .

Since n, T are arbitrary, we have in general, for 1 < j < m ≤ T the recurrence
relation

zmj = hmz
m−1
j−1 + zm−1j . (5)

The initial conditions are

zm1 =

m∑
t=1

ht for m = 1..T ,

and

zmm =

m∏
t=1

ht for m = 1..n.

We have
D = zTn , (6)

requiring of the order nT arithmetic operations rather than n
(
T
n

)
. (Actually the

order is roughly T min(n, T − n), the worst case nT is for n = T/2)
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3 The gradient

Note that we want to compute the log-likelihood, i.e. logL where L is given by
(2). For maximization, we also need the gradient. We have

logL = logC − logD =
∑
t∈Y

xt · β − logD. (7)

For the i’th partial derivative, we thus get

∂ logL

∂βi
=
∑
t∈S

(xt)i −
D′

D
. (8)

D′ is equally demanding to compute as D, but we may in fact differentiate
our recurrence relation (5) to get a recurrence relation for each partial derivative:

(zmj )′ = h′mz
m−1
j−1 + hm(zm−1j−1 )′ + (zm−1j )′. (9)

We have

h′m =
∂hm
∂βi

= hm(xm)i. (10)

Considering the i’th partial derivative

gmj = (zmj )′ =
∂zmj
∂βi

and using (10) in (9), we get the following recurrence relation:

gmj = hmg
m−1
j−1 + gm−1j + (xm)ihmz

m−1
j−1 .

The only difference between this recurrence and (5), is that this one has a
heterogeneity term (xm)ihmz

m−1
j−1 , and the initial conditions are the derivatives

of the zmj conditions, i.e.

gm1 =

m∑
t=1

(xt)iht for m = 1..T ,

and for gmm with m = 1..n we can use the recurrence relation

gmm = (zmm)′ = (hmz
m−1
m−1)′ = h′mz

m−1
m−1 + hmg

m−1
m−1 . (11)

To sum up, we have, for the derivative of the denominator in (2):

D′ = gTn . (12)

As with D this requires far less operations than computing the sum over RT
n .
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4 Summary

We have the following results:

Theorem 4.1. Let D =
∑

a∈RT
n

exp(
∑

t∈a xt · β) be as in Section 1. For 1 ≤
t ≤ T , denote ht = exp(xt · β). For 1 < j < m ≤ T , let

zmj = hmz
m−1
j−1 + zm−1j .

Assume zm1 =
∑m

t=1 ht for m = 1..T , and zmm =
∏m

t=1 ht for m = 1..n. Then

D = zTn .

Corollary 4.2. Computation of the log-likelihood defined in (2) can be done in
the order of nT steps.

Here’s a short fortran snippet, utilising Theorem 4.1 for computing D, given
n, T and h. Note, by the way, that the program may be made simpler, though
probably not faster, by simplifying the initial conditions by starting one step
further back and use as initial condition: zm0 = 1 for m = 0..n and zm−1m = 0
for m = 1..n.

integer :: m,j,n,T
double precision :: z(1:T,1:n), h(1:T), D
z(1,1) = h(1)
do m=2,T-n+1

z(m,1) = z(m−1,1) + h(m)
end do
do m=2,n

z(m,m) = z(m−1,m−1)*h(m)
end do 10

do j=2,n
do m=j+1,T−n+j

z(m,j) = h(m)*z(m−1,j−1) + z(m−1,j)
end do

end do
D = z(T,n)

Also note that the program is not recursive. A purely recursive implemen-
tation of Theorem 4.1 is aesthetically pleasing, but will have problems reusing
results. E.g. consider computing z53 = h5z

4
2 + z43 . The z42 expands as h4z

3
1 + z32

whereas z43 = h3z
3
2 +z33 . The quantity z32 occurs in both of these expressions and

should only be computed once. A purely recursive implementation (which is not
caching results), will compute z42 and z43 independently and not take advantage
of this reuse. This will roughly double the work for each recursion level, i.e. it
will introduce a slow-down factor of something in the vicinity of 2n.
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We strongly suggest that software providers implement this algorithm rather
than the direct summation or the recursive variant. (Stata’s manual may suggest
that Stata is using a recursive algorithm, but the details are unknown to us.)

By differentiation of the above recurrence, we get

Theorem 4.3. Let D and ht be as above. For 1 < j < m ≤ T , and 1 < i ≤ K,
let

gmj = hmg
m−1
j−1 + gm−1j + (xm)ihmz

m−1
j−1

where zmj is as in theorem 4.1. Assume gm1 =
∑m

t=1(xt)iht for m = 1..T and
that gmm for m = 1..n are given by (11). Then

∂D

∂βi
= gTn

Clearly, it is equally easy to get a recurrence relation for the Hessian.

A Smalltalk & Example

So we have T different numbers, h1, h2, . . . , hT . We want to pick n of these
numbers and multiply them together. In fact, we want to pick n different
numbers in every possible way, and add all these n-length products. This sum
we call zTn .

The main idea in this note is to place these products in two classes (sets).
The first set (call it A) contains all the products with hT as a factor, the second
set (call it B) contains all the products which don’t have hT as a factor. If we
remove hT from each product in A, we are left with a set of products of n − 1
numbers among {h1, h2, . . . , hT−1}. In fact, this set contains all such products,
so its sum is what we call zT−1n−1 . If we multiply by hT we get all the numbers in
A, thus the sum of all numbers in A is

hT z
T−1
n−1 . (13)

The set B, by construction, consists of all n-length products of the numbers
{h1, h2, . . . , hT−1}, thus its sum is what we have called

zT−1n . (14)

Adding together (13) and (14) we get

zTn = hT z
T−1
n−1 + zT−1n . (15)

For each term on the right hand side, we use the same argument, thus

zT−1n−1 = hT−1z
T−2
n−2 + zT−2n−1

and
zT−1n = hT−1z

T−2
n−1 + zT−2n .
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Note that the quantity zT−2n−1 appears in both of the right hand sides. This pro-
cess stops when either the subscript becomes 1, or the subscript becomes equal
to the superscript (the right hand side is not meaningful then), this is exactly
our initial conditions. I.e. zm1 is the sum of all products with 1 factor, i.e. it’s∑m

t=1 ht. The number zmm is the sum of all m-length products in {h1, . . . , hm}.
There is only one, i.e. zmm =

∏m
t=1 ht.

As an example, assume T = 4 and n = 2. We have the numbers h1, h2, h3, h4.
We have the collection RT

n :

RT
n = R4

2 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

consisting of all sets with two elements from {1, 2, 3, 4}. So we want to compute

z42 =
∑
a∈R4

2

∏
t∈a

ht = h1h2 + h1h3 + h1h4 + h2h3 + h2h4 + h3h4.

The idea is to split up this sum, one term with those containing h4 (which
we then may use as a common factor), and one without h4:

h4
∑
a∈R3

1

∏
t∈a

ht +
∑
a∈R3

2

∏
t∈a

ht = h4(h1 + h2 + h3) + (h1h2 + h1h3 + h2h3). (16)

The last term is handled the same way:

h1h2 + h1h3 + h2h3 = h3(h1 + h2) + h1h2. (17)

Now, in the original sum there were 6 terms, so 6 multiplications and 5
additions, close to 2

(
4
2

)
= 12 operations. If we count the operations in our

divide and conquer method, there are 2 multiplications and 2 additions in (17),
and there are 3 additions and 1 multiplication in (16), a total of 8 operations.
(Or 7 if we do h1 + h2 only once.)

The reader is invited to do the same with T = 5, n = 3 to understand the
n × T matrix below. I.e. to check that z53 in the lower right corner evaluates
to the sum of all 3-length products from {h1, h2, . . . , h5}. Indeed, computing
z53 requires 12 arithmetic operations, compared to 3

(
5
3

)
− 1 = 29 for the full

sum. The matrix can be filled in left to right, top to bottom. Entries with · are
undefined or not needed to reach the bottom right corner. The upper row and
main diagonal are filled in according to the initial condition in Theorem 4.1.
Note how the other entries are instances of (15). z

1
1 = h1 z21 = h2 + z11 z31 = h3 + z21 z41 = · z51 = ·
z12 = · z22 = h2z

1
1 z32 = h3z

2
1 + z22 z42 = h4z

3
1 + z32 z52 = ·

z13 = · z23 = · z33 = h3z
2
2 z43 = h4z

3
2 + z33 z53 = h5z

4
2 + z43


Note the similarity with Pascal’s triangle. This matrix is the same z as we

build up in the fortran snippet above. Also, note that at each step we only use
the cell immediately to the left and the one above it, thus, if nT is very large,
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we may save memory by not storing the full matrix. The above matrix results
in the following formula for z53 :

z53 = h5(h4(h1 + h2 + h3) + h3(h1 + h2) + h1h2)

+h4(h3(h1 + h2) + h1h2) + h1h2h3.

Computing (2) directly, typically requires n
(
T
n

)
steps, so the speedup will be

around
n
(
T
n

)
nT

=

(
T
n

)
T
,

a quantity which easily becomes large. For our example with T = 21, n = 10 we

have
(T
n)
T ≈ 17000. For the more ambitious example T = 60, n = 12, the factor

is approx 23× 109, or 1 second compared to 740 years.
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