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Dummy-encoding Inherently Collinear Variables

Simen Gaure

Abstract

This note is the result of trying to spell out what happens when we
dummy-encode a set of variables which is known to be multicollinear at
the outset. There seems to be a range of approaches in the literature, this
is an attempt to collect the fundamental foot-work in a single note.

We start out with a self-contained presentation of the general treat-
ment of exact multicollinearities, with estimable functions and estimation
constraints on dummies. And provide an example at the end.

Much of this has been discussed in the context of age-period-cohort
analysis in [2] and various other places.

1 Introduction

Let D be a (n×k)-matrix, the data matrix. n is the number of individuals, k is
the number of explanatory covariates. D possibly includes a constant column.
For any matrix A, let A′ denote its transpose. I denotes the identity matrix (of
appropriate size).

Definition 1.1. A set of multicollinearities (or just a collinearity) is an (r×k)-
matrix M of rank r < k, with the property MD′ = 0. We also assume M is
a maximal set of collinearities (i.e. whenever XD′ = 0, then rank(X) ≤ r).
Moreover, for the sake of clarity, this property is inherent in the covariates, not
a spurious property of the particular data set. That is, we know in advance that
there is collinearity in the data.

Example 1.2. For a fully dummy-encoded variable v with k values, {vi}ki=1,

we have
∑k
i=1 vi − 1 = 0 for every observation (because at any time, exactly

one of the vi’s is 1, whereas the others are zero), thus our collinearity M is the
1× k-matrix M =

[
1 1 . . . 1 −1

]
, where the last entry corresponds to the

constant covariate.

We have a function Y which in this note is of the form Y (B) = g(B′D′)
where B is a parameter vector (a column vector). B′D′ is the vector of in-
dices, (each element is often called β′Xi), g is assumed to act elementwise on
this vector. We may think of Y (B) as a vector of (predicted) left-hand sides.
Estimation of β’s is to find a B so that Y (B) matches the observed Y in a best
possible way (typically by maximum likelihood estimation). In the presence of
a collinearity, we need to put some restriction on the parameters in order to
do a rational estimation. It’s not that the collinearity introduces bias, but it
introduces non-identifiability, and a degenerate Hessian which makes both the
estimation numerically infeasible and the estimation of standard errors quite
complicated.
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2 Inherent multicollinearity

Assume we have a candidate B for the parameter vector. Let X be a (r ×
1) matrix; then Y (B − M ′X) = g((B′ − X ′M)D′) = g(B′D′ − X ′MD′) =
g(B′D′) = Y (B). Thus B is not identified. We may shift B by M ′X (with an
arbitrary X) and still get the same left-hand sides.

In Theorem 3.1 of [2], this is formulated as translation by eigenvectors of
D′D corresponding to the eigenvalue 0.

Lemma 2.1. The set of vectors of the form M ′X is the same as the eigenspace
of D′D corresponding to the eigenvalue 0. Thus, the rows of M span the null-
space of D′D (or D).

Proof. To see this, note that D′DM ′X = D′(MD′)′X = 0 (because MD′ = 0
by definition), thus M ′X is an eigenvector of D′D for the eigenvalue 0. Con-
versely, if V satisfies D′DV = 0, let X = (MM ′)−1MV , we have that W =
V −M ′X = (I −M ′(MM ′)−1M)V is the orthogonal projection of V onto the
the null space of M , i.e. W is orthogonal to every row of M . Since we have
D′DW = 0, we have W ′D′DW = (DW )′(DW ) = 0, thus DW = 0. That is,
we may add W ′ as a new row to M to get a larger collinearity matrix, but since
M by definition has maximal rank, we must have W = 0, thus V = M ′X.

Remark 2.2. In this note we have supposed that we know the collinearity, i.e.
the matrix M , which is in some understandable form. In the case that there
is an unknown multicollinearity in the data, we may attempt to find a simple
form by finding a suitable basis for the null-space of D. This basis may be
used as the rows of M . One simple method for doing this is to do a Cholesky-
decomposition (or QR) with pivoting of the matrix D′D (or the Hessian). Keep
only the rows with (close to) non-zero pivots, split the columns into a part
with non-zero pivots (call it A), the other columns is called B. Then solve the
system AX = B. The variables corresponding to the columns of B may be
written as linear combinations of the other variables, with the columns of X as
weights. The structure of these weights may shed some light on the nature of
the multicollinearity. This method is along the lines of [1].

Definition 2.3. Two parameter vectors B1 and B2 are said to be equivalent
(under the collinearity M) if B1 −B2 ∈ R(M) where R(M) is the row-space of
M . Equivalently, if there exists a vector X with B1 −B2 = M ′X.

Thus two equivalent parameter vectors B1 and B2 will predict identical left-
hand sides: Y (B1) = Y (B2) and are thus indistinguishable in this perspective.

We could in principle insist that parameter vectors don’t live in Rk, but
rather in the quotient vector space Rk/R(M) which is isomorphic to Rk−r; this
would make them unique. However, we have chosen to approach this problem
from a slightly more practical angle.

Definition 2.4. A restriction on the parameters (compatible with a collinearity
M) is an (r× k)-matrix T with the property rank(TM ′) = r. (Or equivalently,
TM ′ is invertible.)

For any given collinearity M there always exists at least one restriction. The
canonical choice for the restriction is T = M , but its interpretation is not always
an intuitive one.
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We can now show that for any restriction T , and any parameter vector B,
there’s a unique parameter vector in the kernel of T equivalent with B. Thus a
restriction may be used as a constraint when estimating.

Lemma 2.5. Given a collinearity M , a parameter vector B1 and a restriction
T . Then there exists a unique parameter vector B2 equivalent with B1 and
satisfying TB2 = 0. It’s given by

B2 = (I −M ′(TM ′)−1T )B1.

In particular, if T = M , then B2 is the projection of B1 onto the null-space
of M .

Proof. We first show that B2 as given is equivalent with B1, and that TB2 = 0.
We have

TB2 = T (I −M ′(TM ′)−1T )B1

= TB1 − TM ′(TM ′)−1TB1 = TB1 − (TM ′)(TM ′)−1TB1

= TB1 − TB1

= 0

For the first assertion, that B1 is equivalent with B2, it’s sufficient to prove
that B1 − B2 = M ′X for some X, but we have, by construction of B2, that
B1 −B2 = M ′(TM ′)−1TB1, thus X = (TM ′)−1TB1 will suffice.

We then show that B2 is unique. Assume there’s another B equivalent with
B2 and with TB = 0. We have B −B2 = M ′X for some X, applying T to this
equation yields T (B − B2) = TM ′X. Now, since we have TB = TB2 = 0 this
reduces to TM ′X = 0. By Definition 2.4 the (r × r)-matrix TM ′ is invertible.
This yields X = 0, so B −B2 = 0, thus B2 is unique.

In case T = M , we know from general theory that the projection onto the
row-space of M is given by M ′(MM ′)−1M , thus I − M ′(MM ′)−1M is the
projection onto its orthogonal complement, which is the null-space.

In other words, if we assume the model and data otherwise are sound, then
B is identified up to translation by M ′X. That is, B’s equivalence class under
translation by M ′X is identified. The whole interpretation exercise under in-
herent multicollinearity rests on how well we are able to understand what this
equivalence class looks like, i.e. which aspect of the vectors in this class is the
same throughout the class.

Observation 2.6. With a linear relation MD′ = 0 between the covariates, a
parameter set is only identified up to translation by vectors in the row space of
M .

Example 2.7. Continuing example 1.2, we may e.g. pick as a restriction the
customary one which sets one of the coefficients to zero, e.g. the first, T =[
1 0 · · · 0

]
and note that the (1× 1)-matrix TM ′ = [1] is invertible.

That is, a restriction picks a unique vector in each equivalence class. Al-
though it doesn’t really matter which restriction we choose (we may easily
“change” the restriction after estimation, by the above lemma it’s just a lin-
ear change of variables), it may be feasible to choose one which makes the

3



resulting parameters (and covariances) easy to interpret. In some cases it’s easy
to implement a restriction such that each of the estimated parameters has their
own meaningful interpretation independent of the others.

Definition 2.8. An interpretation (under the collinearity M) is a (d×k)-matrix
S such that SM ′ = 0. Likewise, a linear combination of parameters is said to
be interpretable if its matrix is an interpretation.

Remark 2.9. A more common name for interpretation is (linear) estimable
function, though in our context interpretation creeps smoothly into our intu-
ition.

Lemma 2.10. If M is a collinearity, S is an interpretation, and B1 and B2

are equivalent parameter vectors, then SB1 = SB2.

Proof. We have by Definition 2.3 that B1−B2 = M ′X for some X, thus SB1−
SB2 = S(B1 −B2) = SM ′X = 0 by Definition 2.8.

Remark 2.11. By definition, the row-space of an interpretation is orthogonal
to the row-space of M . Thus, it’s contained in the null-space of M . Moreover,
any vector in the null-space of M is clearly an interpretation (when viewed
as a 1 × k matrix), thus by the rank-nullity theorem, rank(S) ≤ k − r. This
loosely says that no more than k − r parameters may be independently inter-
preted. (Which is just another way of saying that the parameter vectors live in
something isomorphic to Rk−r).

Indeed, by rank-maximiality of M , we note that the row-space of S is con-
tained in the row-space of D.

Remark 2.12. Given a parameter vector B, the interpretation SB only de-
pends on B’s equivalence class, and is thus independent of parameter restric-
tions. The interpretation dimension d may be 1 if we e.g. want to interpret
only the sum of the parameters, or it may be quite large if we e.g. want to
interpret every difference of two arbitrary parameters. A particularly large and
useless interpretation is D, the data matrix. (We know from Definition 1.1 that
MD′ = 0). We’re obviously interested in something smaller. A restriction T
is never an interpretation, since by Definition 2.4 we have rank(TM ′) = r 6= 0.
(That the restriction can’t be estimable is also noted at the bottom of p. 2794
of [2].)

Example 2.13. Continuing example 1.2, the customary interpretation is the
difference between each coefficient and the reference coefficient (which we chose
as the first one), thus our full interpretation (we now discard the intercept by
setting the last column to zero) is

S =


0 0 0 0 0 0 0
−1 1 0 0 · · · 0 0
−1 0 1 0 · · · 0 0
· · · · · · · · · · · · · · · · · · 0
−1 0 0 0 · · · 1 0


which when multiplied into any parameter vector yields the differences between
each parameter and the first one (which happens to be zero with the partic-
ular restriction in example 2.7, so that each estimated parameter has its own
interpretation.) We easily see that SM ′ = 0.
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A more straightforward definition of interpretation would be that it’s some
linear combination of β’s which is independent of the parameter restriction.

To distinguish this formal definition of interpretation and interpretable from
the more intuitive notions of the same name, we emphasize the former usage.

Remark 2.14. An important thing to note is that a restriction is merely a
device which makes it possible to estimate a parameter vector; a representative
of its equivalence class under the collinearity relation. The choice of restriction
has no influence on the predictive properties; all vectors in the equivalence
class predict the same left hand side. Thus, we may settle for the canonical
restriction T = M as linear constraints on the parameters. On the other hand,
an interpretation is something we apply to the estimated parameter vector, and
it will yield the same interpreted values, an invariant of the equivalence class,
independently of which restriction we picked in the first place. However, as
seen from the previous example, it’s sometimes possible to pick a restriction
which makes the interpretation exercise trivial. And of course, when applying
a non-trivial interpretation, one must of course adjust the standard errors (i.e.
the covariance matrix) accordingly.

Remark 2.15. We have not talked about how restriction change affects the
standard errors. Since the parameter change in Lemma 2.5 is linear, the Jaco-
bian will be the constant I −M ′(TM ′)−1T . Thus, given the covariance matrix
for B1 we may easily compute it for B2 (save for numerical inaccuracies).

3 An example

Example 3.1. Here’s the motivating example for this note. Say we have co-
variates c, a, y (cohort, age, year) with the deterministic relation c + a = y.
We dummy-encode the data completely. I.e. say c, a and y are integers,
c ∈ [`c, uc], a ∈ [`a, ua] and y ∈ [`y, uy]. We create sets of dummies (c`c , . . . , cuc

),
(a`a , . . . , aua

) and (y`y , . . . , yuy
). Such that ci = 1 when i = c, and zero other-

wise. Similarly with a and y. This example may also be found in [2].
As in [2] we get four relations:

uc∑
i=`c

ci − 1 = 0

ua∑
i=`a

ai − 1 = 0

uy∑
i=`y

yi − 1 = 0

uc∑
i=`c

ici +

ua∑
i=`a

iai −
uy∑
i=`y

iyi = 0
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Thus our collinearity matrix is

M =


1 · · · 1 0 · · · 0 0 · · · 0 −1
0 · · · 0 1 · · · 1 0 · · · 0 −1
0 · · · 0 0 · · · 0 1 · · · 1 −1
`c · · · uc `a · · · ua −`y · · · −uy 0

 .
This matrix is somewhat hard to interpret, but it might be useful for studying

what kind of restriction we should (or should not!) implement. If we pick one
reference for each dummy-group, and some fourth reference for the joint relation,
we can e.g. have a restriction T like:

T =


1 · · · 0 0 · · · 0 0 · · · 0 0
0 · · · 0 1 · · · 0 0 · · · 0 0
0 · · · 0 0 · · · 0 1 · · · 0 0
0 · · · 0 0 · · · 0 0 · · · 1 0


We get

TM ′ =


1 0 0 `c
0 1 0 `a
0 0 1 −`y
0 0 1 −uy


which typically has rank 4 (Subtract the third row from the fourth to get a
triangular matrix with `y − uy in the lower right corner. It’s different from 0 if
we have more than one value for the y covariate).

How do we interpret a parameter vector under the relations M? The best
thing to do is probably to try to understand the equivalence class. For a moment,
forget about the intercept (i.e, remove the last column in M and T ). So, what
can we do with the parameter set without moving out of the equivalence class?

Assume we force one parameter in each dummy-group to 0. For simplicity
we take the first one, i.e. βc,`c = βa,`a = βy,`a = 0. The first 3 rows of M vanish
and we’re left with

M =
[
0 1 · · · uc − `c 0 · · · ua − `a 0 · · · `y − uy

]
We have now attempted the interpretation of β’s to be the customary rela-

tive to the reference interpretation. But still we have only identified a certain
equivalence class, not a parameter vector. Thus we don’t have an interpretation.
We may still shift the β along the line λM :

Lλ = (0, λ, 2λ, . . . , scλ, 0, λ, 2λ, . . . , saλ, 0,−λ,−2λ, . . . ,−syλ).

(where sc, sa and sy is the number of dummies in each group.)
Note that in each dummy-group this is a “staircase” with step height λ.

Thus our β-vector is identified up to a “staircase trend”.
To make things a little bit simpler, let’s keep the covariates c and a intact, i.e.

we have a single dummy-group, the (y`, . . . , yu) with parameters (βy,`, . . . , βy,u).
We force βy,` = 0, so we get a single collinearity c+a−

∑
(i− `)yi− ` = 0, thus

M =
[
1 1 0 −1 −2 . . . `− u

]
6



(still we discard the intercept since we’re not interpreting it.)
Our equivalence class of parameters is such that we may shift any parameter

vector
(βc, βa, βy,`, βy,`+1, . . . , βy,u)

with something like

Lλ = (−λ,−λ, 0, λ, 2λ, . . . , syλ).

Assume we have two equivalent parameter vectors

B1 = (βc, βc, 0, βy,`+1, . . . βy,u)

B2 = (β′c, β
′
a, 0, β

′
y,`+1, . . . β

′
y,u),

(1)

their difference is Lλ for some choice of λ.
We have β′c − βc = β′a − βa = λ for some λ, thus neither βc nor βa are

interpretable as such, but the difference βc − βa is (i.e. β′c − β′a = βc − βa is
independent of λ).

For differences of βy’s we have

β′y,i − β′y,j = (i− j)λ+ (βy,i − βy,j) (2)

thus differences of arbitrary βy’s are not interpretable.
We may sum this up:

Observation 3.2. Assume we have covariates c, a, y with c + a − y = 0.
Assume we dummy-encode y as (y`, y`+1, . . . , yu) with corresponding parameters
(βy,`, βy,`+1, . . . , βy,u). Then the differences βy,i − βy,j are not interpretable.

Consider the following quantity:

γi = βy,i −
i− `
u− `

βy,u.

This is the vertical distance from the point (i, βy,i) to the line through the
endpoints (`, βy,`) and (u, βy,u). (Remember that βy,` = 0).

Denote by γ′i the γi for B2 in equation (1), denote by γi this quantity for
B1. We remember that B2 = B1 + Lλ for some λ. We therefore have β′y,i =
βy,i + (i− `)λ for every i. Thus, we get

γ′i = β′y,i −
i− `
u− l

β′y,u

= (i− `)λ+ βy,i −
i− `
u− `

((u− `)λ+ βy,u)

= βy,i −
i− `
u− `

βy,u

= γi

Thus, γi is interpretable; it’s independent of the additional restriction, it’s
relatively simple and is therefore probably a quantity we might try to interpret.

Say we force βy,u = 0. Assume for simplicity that all the βy’s then are zero.
If we now instead force βy,u = f for some f , then all the new points (i, βy,i)
will still lie on the straight line between the endpoints (`, βy,`) and (u, βy,u).
This will be an equally good parameter vector in terms of the model, we can’t
identify which line is the “right” one. This gives us the following interpretation:
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Observation 3.3. With the additional restriction βy,u = 0, (that is, both the
first and the last βy is normalized to zero); the remaining βy’s may be interpreted
as deviations from a linear trend. We can’t identify which linear trend.

As we know from previously, there’s more than one interpretation. Here’s
another one, a double difference. Let

τk,i,j = (βy,i+k − βy,j+k)− (βy,i − βy,j)

for meaningful combinations of (i, j, k). These are interpretable for every k. We
implement the restriction βy,`+1 = 0, i.e. the year after the reference year is
also zero. We let k = 1 and j = ` to get the quantity

τi = τ1,i,` = βy,i+1 − βy,i

which has the interpretation as the effect of time-travel from year i to i + 1
relative to time-travel from year ` to year `+ 1.

Remark 3.4. Let’s ponder a bit on this. In one of our applications we have a
restriction that we actually believe is true, namely that the coefficients for two
particular adjacent age-groups are identical (similarly to the example above).
In this way, a certain difference becomes zero, and all differences between ad-
jacent coefficients are identified (relative to our belief), and, by telescoping, all
coefficients are identified. If our belief is wrong (by the amount λ), the coeffi-
cients will be biased by λd where λ is a constant and d is the distance from the
reference. Also, if λ 6= 0, not only the age-coefficients become biased, but also
the year- and cohort-coefficients, by the same linear trend. There’s little we can
do about that, so we choose to believe.

If our belief is correct, but it fails due to sampling uncertainty, how does
this affect the estimated standard errors? More specifically, will uncertainty in
the references due to sampling error be reflected as a linearly increasing trend
(linear in the distance from the references) in the standard errors? It turns out
that the answer is yes. The standard errors agree well with confidence intervals
computed by bootstrapping. This follows from remark 2.15.
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