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a b s t r a c t

The paper presents a very simple mathematical proposition that enables easy examination of com-
parative dynamics when the stock of a renewable biological resource is very low. The proposition is
used to prove that in the canonical schooling fisheries model the optimal harvest rate is a decreasing
function of the biological productivity of the resource for low stock levels even if the optimal steady
state harvest rate is an increasing function of biological productivity. The results presented here carries
over to the effect of technological change in the Ramsey model as the fisheries model used here and
the Ramsey model are formally equivalent.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Natural resource economics was given its capital theoretic
oundations in Clark (1973), Clark and Munro (1975) and Clark
t al. (1979). Natural resource economics makes extensive use of
ynamic optimization and as in any other branch of economics
t is interesting to study how changes in the parameters of a
odel affect the optimal solution. In resource economics this

s usually done by analyzing changes in a steady state when
arameters are perturbed. Clark (1990), pp 130–135, derived the
iscounted supply curve where steady state harvest rate is a
ackwards bending function of price implying that when the
rice is high enough the steady state stock will be below the
tock yielding the maximum sustainable yield and steady harvest
ates will decrease as a function of price. Nøstbakken and Bjørndal
2003) estimated discounted supply functions for herring based
n Clark’s model. Caputo (1989) analyzed the effect of changes
n parameters such as price and technology and described the
ptimal paths from one steady state to another. The examination
f behavior outside of steady state is often done with numerical
ethods, see e.g. Kvamsdal et al. (2016) and Nøstbakken and
jørndal (2006).
Theoretical analysis of optimal paths outside of steady state,

ermed comparative dynamics, was initiated by Oniki (1973)
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where a variational calculus is developed. Caputo (1990a) devel-
oped dynamic versions of the envelope theorem. Several applica-
tions have been published based on these papers. For example,
the analysis of an increase in price on the extraction rate of a
non-renewable resource examined in Caputo (1990b) is based
on Oniki (1973). Nævdal (2022) uses a different approach by
examining how parameters affect the stable manifold in a phase
diagram. Nævdal (2022) demonstrates that for low stock levels
increased productivity in the harvest technology leads to a lower
harvest rate even though the steady state harvest rate increases,
thus providing an example that underscores that changes in
optimal policy outside of steady state may be opposite of changes
in steady state. The analysis in Nævdal (2022) hinges on the
existence of an interval of low stock levels where it is optimal
to set the harvest rate equal to zero. In the present paper it is
optimal with a positive harvest rate for all positive stock levels.

Both the variational calculus approach pioneered by Oniki
(1973) and the analysis in Nævdal (2022) are algebraically de-
manding and it is perhaps therefore interesting to derive results
where comparative dynamics are easily checked. The present
paper provides an example.

2. Comparative dynamics on the shadow price at low stock
levels

Consider the following two optimal control problems:

Vi (y0) = max
∫

∞

F i (y, u) e−ρtdt subject to

u∈R+ 0
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˙ = f i (y, u) and y (0) = y0, i = 1, 2 (1)

Here i is an index whose purpose is to distinguish between
two control problems that may be very different. Both problems
are assumed to satisfy sufficiency conditions for a unique optimal
solution, such as Theorem 9.11.1 in Sydsæter et al. (2008). Pon-
tryagin’s maximum principle gives us conditions for optimality:

F i
u (y, u) + µif iu (y, u) ≤ 0 (= 0 if u > 0) (2)

µ̇i = ρµi − F i
y (y, u) − µif iy (y, u) (3)

Here µi is the current value shadow price for the problems. If
u > 0, then Eq. (2) implies that u may be written as a function of
y and µi:

u = χi (y, µi) (4)

These equations, together with the differential equation for
y and the transversality condition, can be used to solve for the
variables’ optimal time paths. However, one can also use them to
construct a differential equation for µi as function of y.

Assume that the solution to the problems in (1) converges
towards long run steady state

(
y∗

i , µ
∗

i

)
. Then one can solve the

following ordinary differential equation:

dµi

dy
=

µ̇i

ẏ
=

ρµi − F i
y (y, χi (y, µi)) − µif iy (y, χi (y, µi))

f i (y, χi (y, µi))
,

µi
(
y∗

i

)
= µ∗

i

(5)

See Conrad and Clark (1987), Ch. 1.6.6 or Judd (1998), Ch. 10.7
for details. The solution to (5) is a function µi

(
y; y∗

i , µ
∗

i

)
. As this

function maps from y to µi along an optimal path µi
(
y; y∗

i , µ
∗

i

)
s in fact the derivative of the value function, i.e. V ′

i (y) =

i
(
y; y∗

i , µ
∗

i

)
from hereon abbreviated µi (y). Inserting µi (y) into

q. (4) yields a feedback control

= χi (y, µi (y)) (6)

This feedback control is a rule that specifies the value of the
ontrol variable for any given value of y. With this setup we can
rove the following proposition:

roposition 1. Consider the two problems in (1). Assume that we
now a priori that Vi (0) = 0 for i = 1,2, and that V1 (y) > V2 (y)
or all y > 0. Then there exists an interval (0, yc) where µ1 (y) >

2 (y).

roof. The value functions may be written Vi (y) = Vi (0) +

imc↓0
∫ y
c µi (z) dz. V1 (y) > V2 (y) ⇒ limc↓0

∫ y
c µ1 (z) dz >

imc↓0
∫ y
c µ2 (z) dz. As µi (·) is a continuous function over (0, y)

here must be an interval (0, yc) where µ1 (y) > µ2 (y). ■

The problems analyzed in Proposition 1 are deterministic, but
he proposition can be extended to stochastic dynamic optimiza-
ion problems. As long as the derivative of the value function
s continuous and piecewise differentiable, Proposition 1 applies.
roposition 1 can also be used to compare stochastic dynamic
ptimization problems with their corresponding deterministic
roblems.
As propositions come in dynamic optimization, Proposition 1

s certainly a very simple one.1 But its simplicity should not
etract from its usefulness as it can be used to construct inter-
sting comparative dynamics results. The next section provides
n example.

1 The result is indeed so simple that one may wonder if it has not been
iscovered before. The only similar result I have found is Brock and Dochert
1983) who use the converse of Proposition 1 by integrating the shadow prices
o find properties of the value function.
2

3. Biological productivity and optimal harvest rates in a fish-
ery

We examine the following standard model of a schooling
fishery

max
h≥0

∫
∞

0
B (h) e−ρtdt subject to ẋ = αG (x)−h and x (0) = x0 (7)

Here B (h) is the instantaneous benefit of harvesting h. It is
ssumed that B (0) = 0, B′ (0) = ∞ and B′′ (h) < 0. αG (x) is the
iological growth function defined over the interval [0, K ]. G (x)

is an everywhere twice differentiable, strictly concave and non-
negative function satisfying G (0) = 0, and α is a parameter used
to indicate biological productivity. An increase in α has the same
effect as increasing the intrinsic growth rate if G (x) is the logistic
growth function. It is assumed that ρ < αG′ (0) which ensures
a steady state with positive values of x = x* and µ = µ*. The
conditions in the Maximum principle then become:

B′ (h) − µ ≤ 0 (= 0 if h > 0) (8)

As we have assumed that B′ (0) = ∞ we can ignore the non-
negativity constraint for h and write B′ (h) = µ. The shadow price
is determined by the following differential equation:

µ̇ = ρµ − µαG′ (x) (9)

Applying the method in (5) we can derive a function µ (x; α)
that is the stable manifold. From Eq. (8) we have that

h = B′−1 (µ (x; α)) := h (x; α) (10)

Here B′−1 (·) is the inverse of B′ (·), and h (x; α) is a feedback
control giving the optimal control as a function of the state
variable.

3.1. Comparative statics in steady state

The effect of α in steady state for this problem is readily found
and follows from B′ (h) = µ and Theorem 1 in Caputo (1997)
where the effect of parameter changes in the Ramsey model
is also demonstrated. The steady state is a triple (h∗, x∗, µ∗)
defined by the equations ẋ = µ̇ = 0 and Eq. (8). Implicit dif-
ferentiation of these equations with respect to α and rearranging
yields:

dh∗
dα

= G (x∗) −
ρ2

α2G′′ (x∗)
> 0

dx∗
dα

= −
G′ (x∗)

αG′′ (x∗)
= −

ρ

α2G′′ (x∗)
> 0

dµ∗

dα
=

(
G (x∗) −

ρ2

α2G′′ (x∗)

)
B′′ (h∗) < 0

(11)

The signs of these expressions are what one would expect. In
steady state the harvest rate and stock become larger and the
shadow price smaller if α increases.

3.2. Comparative dynamics for low stock levels

Let us now compare two fisheries with different biological
population dynamics differing by the value of α. The biologically
ost productive fishery has a biological productivity parameter
1 > α2. Both fisheries satisfy that the value of the fishery is zero
f there is no fish. Clearly the fishery with the highest biological
roductivity has the largest value function for all strictly positive
tock levels. It then follows from Proposition 1 that there exists
n interval (0, xc) where µ (x, α1) > µ (x, α2) for all x in (0, xc).

From (8) it follows that B′′ (h) dh = dµ which implies that h is a
monotonically decreasing function of the shadow price. This again
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mplies that for all x in (0, xc) it holds that h (x, α1) < h (x, α2).
hus we have that even if an increase in biological productivity
eads to larger harvest rates in steady state, for sufficiently low
tock levels it is optimal to harvest less if a fishery is biologically
ore productive.
The explanation for this result is that in a more biologically

roductive fishery it is on margin more profitable to be close to
teady state. It therefore pays to reduce harvest rates at low stock
evels in order to get close to steady state sooner. Surprisingly
his effect does not depend on the discount rate as it holds for all
ositive values of ρ.

. Summary

The present article presents a simple mathematical proposi-
ion that can be used to examine the comparative dynamics of
ptimal control in certain classes of natural resource models. The
roposition is used to analyze how higher biological productivity
mplies lower harvest rates when fish stocks are sufficiently low
nd it is shown that higher biological productivity implies lower
arvest rates for sufficiently low stock levels even if higher bio-
ogical productivity implies higher harvest rates in steady state.
he analysis is performed with general functional forms, but is
kin to an increase in the intrinsic growth rate in the logistic
rowth function.
The methodology obviously applies to other branches of eco-

omics that use similar models. For example can Proposition 1
e used to analyze changes in technology in the Ramsey model.
t is hoped that the mathematical result can be useful for other
esearchers examining comparative dynamics as well as for in-
tructors looking for an easily accessible example of comparative
ynamics in natural resource economics classes.
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