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Abstract
This article analyses the effect of productivity improvements on optimal fisheries manage-
ment. It is shown that when harvest costs are independent of resource stock and the stock 
is below its steady state level, then for any given stock it is optimal to reduce harvest levels 
in response to a productivity increase unless optimal harvest rate is already zero. If harvest 
costs are stock dependent this result is modified; for stock dependent harvest costs there 
exists an interval of stock sizes below the steady state where it is optimal to reduce the 
harvest rate for any given stock size whereas if the harvest rate is close to an economically 
optimal steady state it is optimal to increase the harvest rate.

Keywords  Fisheries · Optimal control · Productivity · Renewable resources

JEL Classification  C61 · Q22

1  Introduction

Many of the world’s fisheries are in dire straits because of poor management and poorly 
delineated property rights with a third of these fisheries labelled unsustainable by the Food 
and Agriculture Organization of the United Nations (FAO 2018). This poor state of affairs 
has been with us for some time and the costs are substantial (Clark 2005). The estimated 
global cost of forgone rents for the year 2012 alone was for instance estimated to be US$ 
83 billion for that year alone (World Bank 2017).

The problem of overfishing is likely to be exacerbated by technology. Brander and Tay-
lor (1997) demonstrated that improved productivity could lead to more aggressive harvest-
ing of open access resources. This also applies to open access fisheries and fisheries subject 
to the tragedy of the commons (Whitmarsh 1990; Squires and Vestergaard 2013; Squires 
and Vestergaard 2018). There are several well documented examples where improved tech-
nology has led to the collapse of a fish stock (Hannesson et al. 2010; Gordon and Hannes-
son 2015). Kvamsdal et al. (2016) point out that even in managed fisheries, “…increased 
technical efficiency and progress, usually lead to overcapacity in national fishing fleets. 
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Overcapacity creates national pressure for higher quotas…”. In a recent paper, Skonhoft 
and Quaas (2019) find that in a restricted open access or shared resource fishery if the long 
run steady state in a shared, but unmanaged, resource fishery is lower than the harvest rate 
associated with maximum sustainable yield, then improved technology may increase rents. 
However in larger, more accessible fisheries this condition is unlikely to hold.

The caveat in Skonhoft and Quaas (2019) not notwithstanding, it seems clear that 
improved technology worsens the market failure of a poorly managed fishery. This is 
unfortunate as improved technology has the potential to make the fishery more valuable 
and therefore makes it even more important that fish stocks are managed as well as possible 
and that the role of technology is understood. Remarkably little has been written on the 
role of technology in an optimally managed fishery. As stated in Squires and Vestergaard 
(2013): "… the normative literature has yet to formally analyze the impact of changes in 
disembodied and embodied technical progress and technical efficiency on optimum exploi-
tation of common renewable resources."

The analysis in the literature on the effects of improved productivity is mostly con-
cerned with steady state analysis and/or singular solutions resulting from bang-bang con-
trols (Clark and Munro 1975; Caputo 1989; Squires and Vestergaard 2013, 2018). However 
steady state analysis is only locally relevant and policy advice for management of recover-
ing stocks should not be based on steady state analysis. As we shall see, in fisheries such a 
strategy would be particularly ill advised as the effects of technology in the case of stock 
dependent costs go in completely different directions in steady state and in stock levels 
sufficiently below the optimal steady state. Squires and Vestergaard (2013, 2018) go some 
way in performing a formal analysis. Their contribution is contrasted with the results in the 
present paper in conjunction with the discussion of stock dependent cost functions.

The results are derived in general versions of the original canonical fisheries model 
(Clark and Munro 1975). The modelling of improved productivity is very basic and 
obtained by examining how an exogenous and unanticipated one-shot change in a produc-
tivity parameter affects optimal policy. This may seem restrictive. However, making the 
productivity change unanticipated allows us to study the pure effect of technology disen-
tangled from the effect of preparing for an expected productivity increase. Also, even if 
a productivity increase is anticipated by the fishing industry it may still catch regulating 
authorities off guard. The present paper may thus inform regulators how to respond to such 
an event. It should also be noted that even if the interpretation of the change in the param-
eter in the present paper is as a productivity increase, other interpretations are also possi-
ble. E.g. an unanticipated permanent decrease in the price of an important normal input has 
the same effect on output as a productivity shock. See Bertoletti and Rampa (2013) for an 
analysis of what constitutes normal and inferior goods.

2 � The Canonical Schooling Fisheries Model

The following is the basic version of the fisheries model applied to a schooling fishery 
(Clark 1990, p 97). In theoretical models of pure schooling fisheries harvest costs are not 
dependent on stock size (Neher 1990, p 177). We assume that the net instantaneous ben-
efits from harvesting is given by a continuous and strictly concave function of the harvest 
rate, h, and given by D(h) – C(h)α−1. Here D(h) is a benefit function, typically price multi-
plied by harvest rate, C(h)α−1 is a cost function and α is a parameter with higher α indicat-
ing better technology. It is assumed that D(0) = C(0) = 0. D�(h) and C�(h) are both assumed 
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positive. D�(h) − C��(h)�−1 is assumed negative and C��(h) is assumed positive. We also 
make the important assumption that 0 < D�(0) − C�(0)𝛼−1 < ∞ . This assumption implies 
that we are not considering a subsistence fishery, but rather a commercial fishery or a fish-
ery where capital and labour have alternative uses.

The fish stock is assumed to be governed by

The natural growth function G(x) is taken to be strictly concave, differentiable and sat-
isfy G(0) = G(K) = 0 for some K > 0 and positive for all x ∈ (0, K). The specification of G(x) 
is in line with standard biological growth functions such as the logistic, which is used in 
phase portraits below, but the formal results do not require a parametric growth function. 
We assume there exists x ∈ (0, K) such that the derivative of the growth function equals the 
discount rate, G�(x) = ρ, which is reasonable for many commercially interesting fish spe-
cies. The assumptions lead to the following optimization problem:

The current value Hamiltonian for this problem is:

The problem in (2) may be solved by using 4 sufficiency conditions for optimality found 
in e.g. Theorem 9.11.1 in Sydsæter et al. (2008). The first condition require that h, maxi-
mize the Hamiltonian at all t which implies:

The second condition requires that the co-state variable satisfy:

The third condition is that H is a concave function over (h, x) which is straightforward to 
confirm. The fourth condition requires that we establish that:

This must hold for all admissible functions x̃(t) that satisfies (1). This condition can only 
be checked after an optimal solution has been found. However, from the phase diagram in 
Fig. 1 it is clear that µ(t) < ∞ as long as x(0) > 0. We further have that and 0 ≤ x̃(t) ≤ K for 
all possible x̃(t) satisfying the differential equation, so the left hand side of (6) computes to 
zero for all possible x̃(t).

Equation (4) defines h as a function of µ and α. This function is denoted1:

(1)ẋ = G(x) − h, x(0) given

(2)
V(x(0), 𝛼) = max

h(t)≥0

∞

�
0

(
D(h) − C(h)𝛼−1

)
e−𝜌tdt

subject to ẋ = G(x) − h and x(0) > 0 given

(3)H = D(h) − C(h)�−1 + �(G(x) − h)

(4)
𝜕H

𝜕h
= D�(h) − C�(h)𝛼−1 − 𝜇 ≤ 0 (= 0 if h > 0)

(5)𝜇̇ =
(
𝜌 − G�(x)

)
𝜇

(6)lim
t→∞

𝜇(t)e−rt(x̃(t) − x(t)) ≥ 0

1  It is also implicitly assumed that the value of h that solves D�(h) − C�(h)�−1 = 0 is larger than hss. With-
out this assumption there is no need to regulate the fishery as the optimal shadow price is zero.
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Note that (4) and Assumption 1 implies that D�(0) − C�(0)𝛼−1 < 𝜇 ⇒ ϕ(µ, α) = 0. For all x 
where (4) holds with equality it also holds that:

(7)h = �(�, �)

(8)
𝜕h

𝜕𝜇
= 𝜙�

𝜇
=

1

D��(h) − C��(h)𝛼−1
< 0

(9)
𝜕h

𝜕𝛼
= 𝜙�

𝛼
= −

C�(h)𝛼−2

D��(h) − C��(h)𝛼−1
> 0 for h > 0

(10)
(
𝜕𝜇

𝜕𝛼

)

h is constant

= −
𝜙�
𝛼

𝜙�
𝜇

= C�(h)𝛼−2 > 0 for h > 0

Fig. 1   A phase portrait for an optimally managed fishery. The figure is computer generated and uses 
a model where D(h) – C(h)α–1 = ph – c

2�
h
2 and G(x) = rx(1 – x/K). The intersection between the isocline 

where dx/dt = 0 and the isocline where dµ/dt = 0 defines the steady state which is a saddle point. Conver-
gence towards the steady state is along the stable manifold that shows combinations of x and µ that are 
compatible with optimality. There is a critical value of x, xc, such that harvesting is zero for all x ≤ xc. xc is 
determined by the intersection of the stable manifold and the line µ = D’(0) – C’(0)α–1 . The stable manifold, 
µ(x, α), is the derivative of the value function and the value of the fishery is zero when the stock is zero. 
This implies that the value function, V(x), is given by the integral under the stable manifold. Thus V(xc), 
indicated by the grey area, is the value of the fishery at the stock level where it is optimal for the fishery to 
commence. Parameter values are given by p = 5, c = 3, r = 1, K = 10, ρ = 0.05 and α = 2
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The inequality in (9) may lead us to infer that higher productivity implies larger harvest 
rates. As we shall see, the inequality (10) and how it affects the shape of the isocline for 
ẋ = 0 is part of the reason why this is wrong.

The model assumptions ensure that there exists a steady state (hss, xss, µss) = limt→∞(h(t), 
x(t), µ(t)) > 0 which if x(0) > 0 will be the long run equilibrium for an optimally managed 
fishery (Clark 1973; Cropper 1979). Convergence of (h(t), x(t), µ(t)) to the steady state 
(hss, xss, µss) will be along a stable saddle path towards a steady state characterized by 
ẋ = G(x) − 𝜙(𝜇, 𝛼) = 0 and 𝜇̇ =

(
𝜌 − G�(x)

)
𝜇 = 0 . This stable path can be found in (x, µ) 

space by solving the following differential equation (Conrad and Clark 1987, Ch. 1.6.6; 
Judd 1998, Ch. 10.7):

The solution to (11) defines µ as a function of x along an optimal path. We denote the 
stable saddle path as µ(x, α). It is worthwhile to note that the stable saddle path µ(x, α) is 
in fact the derivative of the value function, V(x, α). As V(0, α) = 0 in this model, we can 
illustrate the value function in a phase portrait as the integral under the stable manifold. A 
phase portrait of the optimal solution is shown in Fig. 1.

Inserting µ(x, α) into (7) gives us optimal h as a feedback control:

The expression in (12) is a feedback control and gives us optimal harvest rates as a 
function of the stock and the productivity parameter and is usually derived in a dynamic 
programming framework. However, by using optimal control with its explicit focus on the 
shadow price we gain some additional structure to the problem that enables us to construct 
analytical results not directly accessible with dynamic programming where interior solu-
tions are typically assumed.2

One such result, crucial in the analysis below, may be found in Nævdal and Skonhoft 
(2018) who prove that if 0 < D�(0) − C�(0)𝛼−1 < ∞ there exists a critical stock level xc > 0 
such that h = Φ(x, �) = 0 for all x ≤ xc. In other words; as long as the instantaneous marginal 
utility of harvesting is finite at h = 0, it is optimal for a well managed fishery to temporarily 
close down if fish stocks are sufficiently low.

3 � The Effect of Increased Productivity

Here we demonstrate that for a given stock size increased productivity reduces the optimal 
harvest rate if h is positive and the stock is below the steady state level, i.e. ф(x, α) is a 
decreasing function of α for all x∈(xc, xss). This result is built on 4 propositions that are 
given below. However a fairly rigorous explanation is given in Fig. 2.

In order to lay the ground for the propositions that follows, note that an increase in 
α will shift the ẋ = 0-isocline in Fig.  1 upwards for all x except x = 0 and x = K. For 

(11)𝜇̇

ẋ
=

d𝜇

dx
=

(
𝜌 − G�(x)

)
𝜇

G(x) − 𝜙(𝜇, 𝛼)
, 𝜇

(
xss, 𝛼

)
= 𝜇ss

(12)h = �(�(x, �), �) = Φ(x, �)

2  Alternatively we could use the optimal control conditions in (4), (5) and the differential equation for x to 
construct a differential equation ḣ = v(h, x) , see Eq. (13) below. This equation would however only be valid 
when (4) has an interior solution and is not very helpful here as much of the present analysis deals with the 
case where h = 0 is the solution to (4) along the optimal path.
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any given x in (0, K), then along the ẋ = 0-isocline we have that h = ϕ(µ, α) = G(x) is a 
positive constant. From (10) it follows that if α increases, then µ must increase if h is to 
remain constant except at x = 0 and x = K as C�(0) = 0 implies that µ is unaffected by the 
change in α at these points.

Proposition 1  Define 
Q ( α )   =  

{
(x,𝜇)|0 < x < x

ss
, ẋ = G(x) − 𝜙(𝜇, 𝛼) > 0, 0 < 𝜇 < D�(0) − C�(0)𝛼−1

}
. 

Let αhigh > αlow. As the ẋ = 0 isocline shifts upwards as α increases it follows that 
Q(αhigh)  is a subset of Q(αlow). Then for any point (x, µ) ∈ Q(αhigh) it holds that 
(d�∕dx)�high < (d�∕dx)�low < 0.

Proof  The slope of any solution through an arbitrary point in Q (αhigh) is given by:

Fig. 2   The effect of technological change in a standard phase portrait. The model and parameters are as in 
Fig. 1. The technological change consists of α increasing from 2 to 4. The isocline for dµ/dt = 0 and the line 
µ = D’(0) – C’(0)α−1 are not affected. The isocline for dx/dt = 0 shifts upward as indicated by the shift from 
the solid black line to the dashed black line. This changes the steady state from the point indicated by ☆  
to the point indicated by ✡. Thus the distance between the steady state and the line µ = D’(0) – C’(0)α−1 
decreases and the steady state value of µ increases. It follows from Proposition 1 that at the stable manifolds 
for high and low productivity cannot intersect for any x  (0, xss). These factors taken together imply Proposi-
tion 2; the stable manifold with high productivity lies above the stable manifold for low productivity for all 
x  (0, xss). Proposition 3 follows; xc increases in response to a productivity increase. Propositions 1, 2 and 3 
can then be used to prove Proposition 4. The economic explanation for Propositions 3, 4 and 5 is that higher 
productivity increases the value of current stock growth as the value of future harvests increase. The shaded 
area indicates the increase in the objective function resulting from the productivity improvement if x(0) = xc 
for α low
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This is true for all α ∈  (0,∞). From (10) we have that ϕ(µ, α) is an increasing func-
tion of α when (x, µ) ∈ Q(αhigh) and the conclusion follows.

Proposition 1 defines a set Q(α). This set is significant in the present context because 
the stable manifold, µ(x, α), is contained in Q(α) for all x ∈ (0, xss). What this proposi-
tion does is to take an arbitrary point in Q(αhigh), calculate the slope of any solution that 
passes through that point and show that the slope is steeper when α is higher. Proposi-
tion 1 can be used to prove the following proposition:

Proposition 2  (a) µ(x, α) is an increasing function of α for all x ∈ (0, xss].

Proof  As a productivity increase shifts the ẋ = 0 isocline upwards while the 𝜇̇ = 0 isocline 
is unchanged, it follows that µ(xss, αhigh) > µ(xss, αlow). If the proposition is false, then there 
must exist an x’ ∈ (0, xss) such that µ(x’, αhigh) = µ(x’, αlow) and 
(d𝜇∕dx)𝛼=𝛼high

x=x�
< (d𝜇∕dx)𝛼=𝛼low

x=x�
 . From Proposition 1 it follows that 

(d𝜇∕dx)𝛼=𝛼high
x=x�

> (d𝜇∕dx)𝛼=𝛼low
x=x�

 which is a contradiction.

Given the economic interpretation of the stable manifold as the derivative of the 
value function, this also makes intuitive sense; better technology increases the marginal 
value of the stock given the stock size.

The critical stock level xc at and below which optimal h is zero will also be affected 
by a productivity increase. We can prove that xc is in fact an increasing function of α.

Proposition 3  The critical xc  where h = 0 for all x < xc  is an increasing function of α.

Proof  Define the relationship between xc and α by xc = xc(α). From Proposition 2 we have 
that D�(0) − C�(0)�−1 = µ(xc(αlow), αlow) < µ(xc(αlow), αhigh). It follows that the value of 
xc(αhigh) that solves D�(0) − C�(0)�−1 = µ(xc(αhigh), αhigh) is larger than xc(αlow).

We can now prove the main result in this section.

Proposition 4  Let αlow < αhigh. Then the feedback control ф(x, α) has the property that for 
all x < xss it holds that Φ

(
x, �high

) ≤ Φ
(
x, �low

)
.

Proof  Denote xc(αi) as xi
c
 for i = {high, low}. A consequence of the existence of xc and 

Proposition 3 is that there exists some xlow
c

 such that Φ
(
xlow
c

, �low
)
 = Φ

(
x
high
c , �high

)
 = 0 for 

all x ∈  [0, xlow
c

 ] and that there is an interval ( xlow
c

 , xhighc  ] where Φ
(
x, �low

)
 > Φ

(
x, �high

)
 = 0. 

It follows from (5) that xss is determined and independent of α. It follows from 
ẋ = G

(
xss

)
− h = 0 in steady state that hss is also independent of α, thus 

Φ
(
xss, �

high
)
 = Φ

(
xss, �

low
)
 . We must now account for the open interval ( xhighc  , xss). If 

Φ
(
x, �low

)
 < Φ

(
x, �high

)
 for some subinterval of ( xhighc  , xss) there must exist a pair 

(
h̃, x̃

)
 

where x̃ ∈ ( xhighc  , xss) such that h̃ = Φ
(
x̃, 𝛼low

)
 = Φ

(
x̃, 𝛼high

)
 and Φ�

x

(
x̃, 𝛼low

)
 < Φ�

x

(
x̃, 𝛼high

)
 . 

We can calculate Φ�
x
(x, �) in a point 

(
h̃, x̃

)
 and when we insert from (8) and (11) we get that:

(13)𝜇̇

ẋ
=

d𝜇

dx
=

(
𝜌 − G�(x)

)
𝜇

G(x) − 𝜙(𝜇, 𝛼)
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We now compare Φ�
x

(
x̃, 𝛼low

)
 and Φ�

x

(
x̃, 𝛼high

)
 to see under what condition the same har-

vest rate at the same stock level yields Φ�
x

(
x̃, 𝛼low

)
 < Φ�

x

(
x̃, 𝛼high

)
 . We calculate that

But the last inequality holds for all 
(
h̃, x̃

)
 including (hss, xss) as µ(x, α) is increasing in α 

and the denominator is decreasing in α.3 This implies that there is at most one point 
(
h̃, x̃

)
 

where Φ
(
x, �low

)
 = Φ

(
x, �high

)
  and we already know that Φ

(
xss, �

low
)
 = Φ

(
xss, �

high
)
 . It fol-

lows that there are no values of x less than xss such that the corresponding harvest rate is 
larger with larger productivity.

Thus we have that in a schooling fishery a unanticipated technological shock will lead 
to lower catch for each given stock size, in turn ensuring a faster convergence to the steady 
state. To get some intuition about this result note that the canonical fisheries model is very 
similar to the well known Ramsey–Cass–Koopmans (RCK) model of economic growth. 
The only difference is that marginal productivity at zero use of input is assumed infinity 
in the RCK model, whereas the corresponding expression in the fisheries model, G’(0), is 
assumed finite. In the analysis of the RCK model the instantaneous elasticity of substitu-
tion, also known by its reciprocal, the intertemporal elasticity of substitution is an impor-
tant explanatory factor. Roughly speaking, the higher the instantaneous elasticity of sub-
stitution, the more willing is the consumer to reduce consumption in the present in order 
to increase consumption in the future, see Blanchard and Fischer (1989, pp 39–43) for a 
discussion of the instantaneous elasticity of substitution and how it affects intertemporal 
tradeoffs in the RCK-model. If we can show that a productivity increase has the same effect 
as an increase in the instantaneous elasticity of substitution we have a way of understanding 
and generalising the above results to a more general cost function c(h, α). It is assumed that 
c(0, α) = 0 and that c(h, α) is increasing and concave with respect to h. It is also assumed 
that c(h, α) and c��(h, �) are decreasing with respect to α except when h = 0.

Φ�
x
(x̃, 𝛼) =

(
𝜙�
𝜇

d𝜇

dx

)

(h,x)=(h̃,x̃)
=

1

D��
(
h̃
)
− C��(h̃)𝛼−1

�������������������������
<0

(
𝜌 − G�(x̃)

)
𝜇(x̃, 𝛼)

G(x̃) − h̃(𝜇(x̃, 𝛼), 𝛼)
�������������������������

<0

> 0

Φ�
x

(
x̃, 𝛼low

)
< Φ�

x

(
x̃, 𝛼high

)

⇕

1

D��
(
h̃
)
− C��

(
h̃
)/

𝛼low

(
𝜌 − G�(x̃)

)
𝜇
(
x̃, 𝛼low

)

G(x̃) − h̃
<

1

D��
(
h̃
)
− C��

(
h̃
)/

𝛼high

(
𝜌 − G�(x̃)

)
𝜇
(
x̃, 𝛼high

)

G(x̃) − h̃

⇕

𝜇
(
x̃, 𝛼low

)

D��
(
h̃
)
− C��

(
h̃
)/

𝛼low
>

𝜇
(
x̃, 𝛼high

)

D��
(
h̃
)
− C��

(
h̃
)/

𝛼high

⇕

𝜇
(
x̃, 𝛼low

)

D��
(
h̃
)
− C��

(
h̃
)/

𝛼low
<

𝜇
(
x̃, 𝛼high

)

D��
(
h̃
)
− C��

(
h̃
)/

𝛼high

3  It should be noted that in steady state the expression �ss

(
� − G�

(
xss

))/(
G
(
xss

)
− hss

)
 is not defined. 

However, the numerical value of this expression does exist and may be found using L’Hôpital’s rule. For 
our purposes it is sufficient to note that the numerical value exists and is negative.
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In the present model we can calculate the equivalent to the instantaneous elasticity of 
substitution for the integrand in (2). This expression is given by:

By using (4), (5) and the differential equation for x one can derive the following differ-
ential equation for h as a function of x which holds when (4) has an interior solution.

In macroeconomics this equation is known as the Keynes–Ramsey rule. From (15) it 
is clear that for any given x < xss, the higher the numerical value of σ(h, α) the faster is the 
rate of convergence towards the steady state value of hss, and therefore also towards xss. 
Differentiating σ(h, α) with respect to α yields:

With exception of c′′′
hh�

 , the sign of all terms in this expression follows from assump-
tions, first order conditions and second order conditions. It follows that c′′′

hh�
 < 0 is a suffi-

cient, but not a necessary condition for σ to be an increasing function of α and therefore for 
Propositions 3 and 4 to hold also with this more general cost function. Thus improved pro-
ductivity has the same qualitative effect along the segment of the optimal path where h > 0 
as an increase in the instantaneous elasticity of substitution has in the RCK model. Intui-
tively, this condition implies that the second derivative of costs with respect to h decreases 
in response to improved technology. As the steady state harvest and stocks level are fixed, 
this implies that net instantaneous utility increases more for high harvest levels close to the 
steady state than harvest levels further below steady state, which makes it optimal to sacri-
fice some instantaneous net utility in the near future in order to speed up the rate of conver-
gence towards steady state. Remarkably as long as c′′′

hh�
 < 0, this effect does not depend on 

the discount rate. It should be pointed out that although the canonical model of a schooling 
fishery and the RCK model are mathematically almost equivalent, they are of course mod-
els of very different things. Importantly, the RCK model has utility as the unit and ρ is the 
rate of time preference. In the fisheries model as long as we do not examine a subsistence 
fishery, but a commercial fishery the unit is money and the discount rate is the interest rate.

4 � Stock Dependent Costs

We now look at the case where the harvest costs depend on stock size, reflecting that for 
many fish-species it is easier to catch a unit of fish if the stock is abundant and if the stock 
of the fish goes to zero, then the marginal cost of harvesting a unit of fish goes to infinity. 
The canonical model is now:

(14)𝜎(h, 𝛼) = −
D�(h) − c�

h
(h, 𝛼)

h
(
D��(h) − c��

hh
(h, 𝛼)

) > 0 for all h > 0

(15)ḣ

h
= 𝜎(h, 𝛼)

(
𝜌 − G�(x)

)

(16)
𝜕𝜎

𝜕𝛼
=

<0
�����

c��
h𝛼
(h, 𝛼)

<0
�����������������������(
D��(h) − c��

hh
(h, 𝛼)

)
+

<0
���������������������(
c�
h
(h, 𝛼) − D�(h)

)
sign =?

�����

c���
hh𝛼

(h, 𝛼)

h
(
D��(h) − c��

hh
(h, 𝛼)

)2
�����������������������������

>0
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It is assumed that C�
h
(h, x, 𝛼) > 0 , C�

x
(h, x, 𝛼) < 0 , C��

h𝛼
(h, x, 𝛼) < 0 for all h and x > 0, 

C��
h�
(0, x, �) = 0 and that C��

hh
(h, x, 𝛼) > 0 . This is consistent with, but not restricted to, cost 

functions of the form4

(17)
V(x(0), 𝛼) = max

h≥0

∞

�
0

(D(h) − C(h, x, 𝛼))e−𝜌tdt

subject to ẋ = G(x) − h and x(0) given.

Fig. 3   Phase portrait when costs are stock dependent. The figure is computer generated and uses 
a model where D(h) – C(h, x)α–1 = ph – ½c(h/x)2α–1 and G(x) = rx(1 – x/K). We then have that 
D�(0) − C�

h
(0, x, �) = p . The major difference between this portrait and the portrait when harvesting costs 

are independent of stock size is the shape of the isoclines. The qualitative effect on the general shape of the 
stable manifold is minor. Note that for x ≤ xc where xc is defined by where the stable manifold intersects the 
line where µ = p, optimal harvest becomes zero. The value of x that solves ρ = G’(x) is a lower bound for the 
steady state stock regardless of how technology affects the cost function. Thus, there is a limit to how much 
stock dependent costs can affect the stable manifold at values of x below this lower bound as optimal h will 
become zero very quickly below it. Parameter values are given by p = 5, c = 3, r = 1, K = 10, ρ = 0.05 and 
α = ¾

4  The cost function in (16) may be derived from a generalized Schaefer harvest function h = qE�1x�2 where 
E is effort and q, γ1 and γ2 are parameters. If the cost of effort is given by kE, then (16) follows from letting 
� = q�

−1
1  , a = �−1

1
 and b = �2�

−1
1

 , see Morey (1986) and Clark (1990).
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Thus the technology is such that an increase in α lowers the marginal cost of harvesting. 
It follows from C(0, x, α) = 0 and C��

h𝛼
(h, x, 𝛼) < 0 that an increase in α also reduces costs 

for all positive h and x.
This model or models very similar to this one has been analysed in a large number of 

papers and is close to the analysis of the pure schooling fishery above. A typical phase dia-
gram is shown in Fig. 3.

We keep the notation from the previous analysis so ϕ(µ, α) is the harvest rate that max-
imises the Hamiltonian, µ(x, α) is the stable manifold/derivative of the value function, ф(x, 
α) is optimal harvest rate as a feedback control and xjc is the critical stock level below which 
one should not harvest when the productivity is of type j.

With stock dependent costs there is also a critical value xc determined by the lowest 
stock of x such that the first order condition for the maximised Hamiltonian is that its 
derivative with respect to h is zero5:

We can use this to find conditions that ensure that xc is a increasing function of α.

Proposition 5 C��
hx
(0, x, �) ≤ 0 is a sufficient, but not necessary condition for xc being an 

increasing function of α.

Proof  Inserting µ(x, α) into (19) and implicitly differentiating gives the result:

If C��
hx
(0, x, �) ≤ 0 then the expression in (20) is positive.

Assuming that C��
hx
(0, x, �) ≤ 0 is in line with standard parameterisations of cost func-

tions used in fisheries. It is also reasonable to expect that the higher the stock, the lower is 
the marginal cost with respect to h. However, one can not rule out that there are exceptions 
to this rule. One can e.g. envision changes in technology that improves productivity for 
some values of h and x and reduces it for others. If that is the case a more detailed numeri-
cal investigation is warranted to establish the sign of �xc

/
��.

(18)C(h, x, 𝛼) = k
ha

𝛼xb
where a > 1 and b > 0

(19)
�H

�h
= D�(0) − C�

h

(
0, xc, �

)
− � = 0

(20)
𝜕xc
𝜕𝛼

=

>0
�������

𝜕𝜇
�
xc, 𝛼

�
𝜕𝛼

−

⎛⎜⎜⎜⎜⎝
C��
hx

�
0, xc, 𝛼

�
�����������

sign = ?

+
𝜕𝜇

�
xc, 𝛼

�
𝜕x

�������
<0

⎞⎟⎟⎟⎟⎠

5  The proof for this statement is much simpler than with the model without state dependent harvest cost 
given in Nævdal and Skonhoft (2018). Here it suffices to note that as long as marginal cost goes to infinity 
as x goes to zero and marginal revenue D(0)  is a positive finite number, such a critical xc will exist (Leung 
and Wang 1976).
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4.1 � The Effect of Improved Productivity on Optimal Harvest Rate when x > xc

Clark and Munro (1975) demonstrate in a model that is linear in the harvest rate that an 
increase in productivity will lead to lowered steady state stocks. Caputo (1989) dem-
onstrates in a fairly general non-linear model that the long-run effect of a productiv-
ity increase is also a lower stock level. Caputo (1989) also show and that a productivity 
increase may be commensurate with both a higher and a lower long term harvest rate hss. 
The initial response will however be an increase in the harvest rate. The results in Caputo 
(1989) are based on the response to a productivity shock if the initial stock is in steady 
state. However, even if the steady state response to a positive productivity shock implies 
that the steady state stock decreases when α increases it is still the case that ф(x, α) will be 
a decreasing function of α if x sufficiently small as proven in Proposition 6.

Proposition 6  If Proposition 5  holds, an increase productivity from αlow to αhigh implies 
that there is an non-empty interval 

[
xlow
c

, x̂
)
 such that harvest levels for a given stock size is 

reduced, i.e. ф(x, αhigh) < ф(x, αlow)  for all x in 
[
xlow
c

, x̂
)
.

Fig. 4   The effect of a productivity increase with stock dependent costs. The figure is computer generated 
with the same parameterization as Fig. 3 except that α is 1/2 when productivity is low and jumps to α = 3/2. 
In line with Propositions 5 and 6, xc increase as a function of α and reduce harvests for stock levels close to 
xc. At the same time increased productivity decreases the steady state xss, so, in line with results in Caputo 
(1989), at least for a period it holds that higher productivity increases harvest rates if the stock is close to 
the steady state. At the limit, as α → ∞, xc and xss will converge to the same point determined by ρ = G’(x)



Productivity and Management of Renewable Resources: Why More…

1 3

Proof  It follows from the existence of xc > 0 for all α > 0 and Proposition 6 that there exists 
a non-empty intervals [0, xlow

c
 ] such that ф(x, αlow) = ф(x, αhigh) = 0 and another non-empty 

interval [ xlow
c

 , xhighc  ] where ф(x, αlow) > 0 and ф(x, αhigh) = 0. Note that h = ф(x, α) is a con-
tinuous function of x and that ф(xhighc  , αlow) > ф(xhighc  , αhigh) = 0. Due to continuity, h cannot 
jump infinitely fast at xhighc  and there is therefore an interval 

(
x
high
c , x̂

]
 where ф(x, αlow) > ф(x, 

αhigh) > 0.

This effect remains regardless of the size of productivity increase. An important thing 
to note from Fig. 3 is that there is a lower bound to how low the steady state stock will be 
reduced by improved technology. Proposition 6 shows that below this lower bound, there 
will be an interval [ xlow

c
 , x̂ ) where the higher the productivity, the lower the harvest rate. 

The effect of increased productivity is summarized in Fig. 4.
Figure  4 shows that the results in the Clark and Munro (1975), Caputo (1989) and 

Squires and Vestergaard (2013) where increased productivity leads to lower steady state 
stocks are compatible with the results in the present paper. If increased productivity 
increases rents in steady state and the stock is low enough one should still decrease har-
vesting in order to increase stocks faster even if the desired steady state level has decreased. 
This is illustrated in Fig. 5.

Squires and Vestergaard (2013) also present results where improved technology leads to 
short term decreases in harvesting. However, their mechanism is that if the regulator knows 
there will be technology improvements in the future, then it will pay to reduce harvest rates 

Fig. 5   The effect of a productivity increase on harvest as function of stock for stock levels above and below 
the steady state. Same parameter values as in Figs. 3 and 4. The solid lines indicate the situation before 
productivity increase. The dashed lines shows harvest and steady state after productivity increase. As the 
model satisfies the premise of Proposition 5, xc increases as a response to the productivity shock even if the 
optimal steady state decreases. As predicted by Proposition 6, there is an interval where the productivity 
increase leads to lower harvest levels even if harvest levels are increased for stock sizes just below steady 
state. Above the steady state stock level we have that increased productivity always leads to higher harvest 
levels for a given stock size
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until the new technology can be utilized. In the present paper the technology improvement 
is unanticipated, but the improvements are still best utilized by letting the fish stock grow 
faster even though instantaneous profits could increase today by fishing more.

A final technical remark is that the assumption that C��
h𝛼
(0, x, 𝛼) < 0 is crucial for the 

result in Proposition 5 that �xc
/
�� is positive for all α. It is however a sufficiency condition 

and not a necessary condition. If C��
h�
(0, x, �) ≥ 0 there may be some intervals of α values 

where �xc
/
�� < 0. However, as may be seen from Fig. 4, if lim�→∞ C(h, x, �) = 0 then xc 

will increase, perhaps not monotonically, and eventually converge to the stock level that 
solves the equation G�(x) = � . It follows that h = ф(x, α) will also be reduced as α increases, 
but perhaps not monotonically.

5 � Concluding Remarks

The present paper examines the basic nonlinear control variable biomass fishery model 
originating from Clark and Munro (1975), and demonstrates in a model of a pure 
schooling fishery the effects of improved productivity on optimal management. We 
build on a result in Nævdal and Skonhoft (2018) where it is shown that there is a lower 
bound for the fish stock below which it is optimal to set the harvest rate to zero. The 
results presented in the present paper indicate that improved technology imply that this 
lower bound should increase and that harvesting should decrease below the steady state.

These results were slightly modified by assuming that costs depend on the stock of 
fish. Improved technology implies a more conservative management regime is in contrast 
to the outcome of an unregulated fishery where improved productivity increases harvests 
and may destroy rents. It follows that the better the technology, the more important is it to 
properly manage fisheries. An important caveat to the results found in the present paper is 
that capital is assumed to be perfectly malleable in the sense that the capacity of the fishing 
fleet can be quickly adjusted (Clark et  al. 1979). Squires and Vestergaard (2013) exam-
ines the impact of malleable capital and technical change when the objective is linear in 
harvest rate. The interaction between capital formation and unanticipated technical change 
when the objective is a nonlinear function of the harvest rate is to my knowledge not yet 
addressed in the literature and should be a subject for future research.

Jim Wilen (2000) bemoaned the lack of influence that resource economics has had 
on the practical regulation of the world’s fisheries. Since then harvest control rules have 
gained traction as a management tool (Kvamsdal et al. 2016). These rules establish a rela-
tionship between the estimates of fish stocks at a given point in time and total allowable 
catch at that time. These conditions specify often takes the form of a lower boundary for 
stocks below which no harvesting should be permitted and harvesting as a linear func-
tion of the stock above that boundary harvest (Deroba and Bence 2008; Engen et al. 1997; 
Kvamsdal 2016). Nævdal and Skonhoft (2018) argue that this is consistent with optimal 
management as such a bound, termed xc above, appears endogenously in general models of 
fish management. Indeed, Fig. 5 shows that in a fairly general model, optimal harvesting as 
function of the stock takes exactly the shape as proposed harvest control rules. The results 
in the present paper show how harvest control rules that approximate optimal manage-
ment policy should be changed in response to changes in technology. In general, improved 
technology should lead to more restrictive harvest control rules for low stock sizes. To the 
author’s knowledge this issue has not been addressed in the literature. The results were 
derived within a model without cohort dynamics. However, if the cohort dynamics can be 
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simplified through the use of slow-fast dynamics it was shown in Nævdal and Skonhoft 
(2018) that a two cohort model could be made analytically equivalent to a single equation 
model. The results in the present paper thus carry over to simple age structured models.
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