
 

Master Thesis 

 

 

Cap-and-Trade and innovation:  

Has EU ETS increased low-carbon patenting 

and green R&D spending in Norway?  
 

Ada Lunde 

 

 

 

 

May 2022 

 

 

 

Master’s in Economics 

Department of Economics 

Faculty of Social Science 

University of Oslo 



1 
 

Acknowledgments 

This master thesis is the final product of the master’s program in Economics at the University 

of Oslo.  

I am extremely grateful for invaluable comments, discussions and inspiration from my 

supervisor Elisabeth Thuestad Isaksen. I would also like to thank the Frisch Center for 

Economic Research for giving me the opportunity to author my thesis as a part of PLATON, 

project nr. 3186, “Kunnskapsplattform for klimapolitiske virkemidler”.  

Moreover, I would like to give a shoutout to Karwan, for being the greatest mental support 

one could ask for. 

Any error is singularly my responsibility. 

 

Ada Lunde 

Oslo, May 2022 

 

 

 

  



2 
 

Abstract 

This master thesis estimates the causal effects of EU Emissions Trading System (ETS) on green 

innovative performance of Norwegian firms. EU ETS is the first and greatest carbon market in 

the world, but the effects of EU ETS remain debated, due to a generous compensation scheme, 

low effective quota prices and the high number of free allowances provided to regulated firms. 

This master thesis contributes some evidence to this debate, with a dataset on innovation 

activity, EU ETS regulation and firms’ characteristics. The main results suggest that regulated 

firms have increased green intramural R&D spending, where the estimated effects suggest an 

annual increase of 2,000,000-13,000,000 NOK. Moreover, the estimates suggest that there has 

been a weak positive effect low-carbon patenting as well, however not at any significant level. 

Other results suggest the same pattern, where regulated firms have a minor increase in green 

innovative activity, thus these results are neither statistically significant, nor of substantial 

degree. The reason for this could be caused by a low effective carbon price for regulated 

manufacturing industries, due to a generous carbon compensation scheme and low quota prices. 
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1.Introduction  
One of the greatest challenges present globally, is climate change and global warming. The 

focus on limiting the consequences of climate change has increased and countries are now 

cooperating on reducing greenhouse gas (GHG) emissions. In the third part of UNFCC’s sixth 

main report it is stated that global greenhouse gas (GHG) emissions continue to increase, and 

in 2019 the total emissions globally where 54% higher compared to the 1990 level (Norwegian 

Environmental Agency, 2022). One of the most important tools to reduce GHG emissions are 

cap-and-trade system (Martin, Muûls and Wagner 2016). To date, cap-and-trade systems are 

important contributions to set a price on carbon and to, ideally, create incentives to reduce GHG 

emissions by increasing low-carbon innovations and develop abatement technologies (Stavins 

2007)(Calel 2020). It is therefore crucial to discuss the causal effects of the world’s first and 

largest cap-and-trade system, the European Union’s Emissions Trading System (EU ETS). 

The EU ETS was officially in operation from 2005 and was the first mandatory cap-and-trade 

system in history (Petrick and Wagner 2014). EU ETS is the cornerstone of EU’s climate 

ambitions to reduce GHG emissions and covers around 40% of GHG emission produced in EU. 

The European Commission intends to achieve climate neutrality in EU by 2050 and reduce the 

net reduction of GHG emissions with 55% by 2030. To achieve these goals, low-carbon 

technologies are necessary (European Commission 2022).  

Regardless of EU ETS’ ambitions, the causal effects are remained debated. One reason for this 

is the high degree of free allowances and a general low quota price (Klemetsen, Rosendahl and 

Raknerud 2020). Most of the research on the effects of EU ETS has been on the direct CO2 

emissions reduction (Martin, Muûls and Wagner 2016), while the scope of literature on 

innovation remains limited (Calel 2020). Calel (2020) found in his study that the overall low-

carbon patenting and R&D spending for regulated firms in Britain was 20-30% higher than 

non-regulated firms in phase I and II. Drawing inspiration by Calel, I will contribute some 

evidence to the debate of EU ETS, by looking at the low-carbon patenting and R&D spending 

for regulated firms. My research question is 

“Has EU ETS regulation increased green innovation among regulated Norwegian 

firms?” 

To measure the causal effect of EU ETS regulation, I conduct a Difference-in-Differences 

(DiD) analysis, on panel data obtained from the Norwegian Environmental Agency (NEA), the 

Norwegian Industrial Property Office (NIPO) and Statistics Norway. Similar to Calel, I found 
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an increase in low-carbon patenting and green intramural R&D spending for regulated firms. 

However, the estimates of low-carbon patents are somewhat small and insignificant. While for 

green intramural R&D spending, the estimates suggest an annual increase of 2-13 mill. NOK 

for regulated firms, depending on the empirical framework. Thus, the significance of these 

estimates are also dependent on the empirical assumptions. 

The structure of this thesis is as follows: chapter 2 contains background information about EU 

ETS and the Norwegian regulatory context. Chapter 3 contains a theoretical framework for cap-

and-trade systems and a definition of innovation followed by a literature review of empirical 

research in chapter 4. Chapter 5 is a description of my dataset, while chapter 6 presents my 

empirical approach and its implications. In chapter 7 and 8 I present my results and the 

robustness checks, respectively. Finally, I discuss my findings in chapter 9 and conclude in 

chapter 10.  

2.Background  

2.1 EU ETS 
EU ETS is a cap-and-trade system for emission allowances, EU Allowance Units (EUA), which 

are tradable for all regulated plants in the regulated countries. The legal framework of EU ETS 

is based on the ETS Directive, where regulation rules for each trading phase are established. To 

date, all countries in the EU and EEA-EFTA (Iceland, Liechtenstein and Norway) are 

participating in EU ETS (Directive 2003/87/EC). Regulation takes place at plant-level, where 

plants that operates in energy-intensive industries, electricity production and aviation are 

obligated to participate. Moreover, each industry has its own threshold for participation, in 

terms of capacity abilities and GHG emissions (European Commission 2022). EU ETS puts a 

cap on how much CO2 equivalents a plant could produce  in a year. Each plant can then trade 

the excess permits they have or buy permits from other plants, where every quota provides the 

permission to release one ton of CO2. The overall goal is to reduce the amount of allowances 

available in the market, to increase the carbon price over time, thus reduce GHG emissions and 

increase low-carbon technology. If an installation, or parts of a regulated installation, is used 

for research and development (R&D) and other innovation activities, the installation will not 

be regulated by EU ETS (Directive 2003/87/EC)(European Commissions 2022)(Norwegian 

Environmental Agency 2019). 

EU ETS was adopted in 2003 and phase I was a pilot phase (2005-2007), where the main 

motivation was to prepare and establish the infrastructure of the system prior to 2008 and a 
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majority of the allowances were provided for free (European Commission 2022). The price for 

non-compliance were 40 euros. The first phase included regulation of CO2 emissions from 

energy-intensive industries and power generations, and the Member states allocated 95% of the 

allowances for free. In phase II this was reduced to 90% (Directive 2003/87/EC). In phase II 

(2008-2012) the EFTA-countries joined, and NOx were regulated as well. The penalty for non-

compliance increased to 100 euros. Due to the financial crisis in 2008, production in Europe 

fell drastically, which led to a decrease in GHG emissions and further led to a price drop of 

EUA and a surplus in permits (European Commission 2022)(Klemetsen, Rosendahl and 

Jakobsen 2020).  In phase III (2013-2020) additional industries and gases were regulated, such 

as the aluminum production. The share of free allowances are still large and the price on EUA 

remained low in phase III after 2008, see figure 1.  

The Directive aims to encourage the use of more energy-efficient technologies, including heat 

and power technology, producing less emissions per unit of output. The Directive aims to 

provide incentives to use more energy-efficient technologies and reduce CO2 intensity per 

output produced. The most important stimulation acts in the Directive for green innovation, i.e., 

CCS, renewable energy and other low-carbon technologies, are the carbon price signal the 

Directive sets. However, due to high number of allowances in EU ETS, it was established a 

market stability reserve to stabilize the and reduce the number of allowances. The aim of MRS 

is to provide credible investment signals to reduce GHG emissions and to increase low-carbon 

innovation (Directive 2003/87/EC).  

 

Figure 1: Historical price of EUA 

Note: the figure illustrates the historical price of EUA, from 2005 to 2022. The graph is collected from Trading Economics: 

https://tradingeconomics.com/commodity/carbon, collected 05.05.2022 

https://tradingeconomics.com/commodity/carbon
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Figure 1 illustrates the historical price of EUA, which experienced a drop after the financial 

crisis in 2008 and remained low until 2018. The Y-axis represents prices in euros. The figure 

shows that the mean price per quota (per ton of CO2 equivalents emitted) has been 20 euros. 

After 2018 the price of EUA has increased steadily and experienced a historical high price in 

2021. In my analysis I do not include the years after 2018, and the price of EUA remains low 

for the years covered in my analysis. As stated in the Directive, a robust carbon price is crucial 

to stimulate low-carbon innovation (European Commission, 2022). The low price of EUA could 

therefore have some implication on the weak effect of low-carbon patenting among the 

regulated firms from my estimations.  

2.2 The Norwegian regulatory context 
Norway has been a part of EU ETS since 2008, but from 2005 firms could voluntarily 

participate in the system. Firms could buy allowances from other regulated plants in EU, but 

Norwegian firms could not sell allowances. EU ETS regulates about 50% of Norwegian GHG 

emissions, mainly from manufacturing industry and the petroleum sector, leaving EU ETS as 

among the most important policy instruments to reduce GHG emissions (Regjeringen 

2020)(Norwegian Environmental Agency 2022). Fossil fuels are the greatest source of CO2 

emissions in Norway, and there has been a tax on CO2 emissions from 1991, which regulates 

emissions from fossil fuels and petroleum (Randen, Slettebø and Grimstad 2021) (Regjeringen 

2020). To provide incentives for firms to reduce GHG emissions, it is important to target 

efficiently, and the EU proposes that emissions from not-regulated firms should be regulated 

by other means, such as carbon-taxes or other arrangements (Directive 2003/87/EC).   

As mentioned, the carbon price is crucial to promote low-carbon innovations. However, the 

effective marginal carbon price for the regulated manufacturing firms in Norway is low, 

compared to other industries and economic agents. In figure 2 we can see the overview of the 

effective marginal carbon price, based on estimates from Randen, Slettebø and Grimstad 

(2021). The Y-axis represents the effective marginal carbon price, and the X-axis shows the 

total CO2 emissions from fossil fuels. The effective marginal carbon price for the industries 

subject to quotas is low. They argue that the price of EUA plays a limited role on the effective 

marginal carbon price in Norway, since they amount of free allowances are high (Randen, 

Slettebø and Grimstad 2021). 
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Figure 2: Effective carbon price in Norway, 2020 

Note: the figure plots the marginal effective carbon price for a various set of Norwegian economic agents and industries. The graph is collected 

from Statistics Norway (Randen, Slettebø and Grimstad 2021): https://www.ssb.no/natur-og-miljo/miljoregnskap/artikler/stor-variasjon-i-

effektive-karbonpriser on 01.05.22. I have translated the text boxes, based on the article in Norwegian.  

 

As we can see from figure 2, the sample of firms in this analysis has the second lowest effective 

carbon price, while households have the highest effective carbon price. The petroleum sector 

faces both CO2 tax and EU ETS regulation, which makes the effective carbon price higher for 

this industry, compared to manufacturing industry. As Randen, Slettebø and Grimstad (2021) 

points out: the industry subjected to quotas are among the industries that release the most CO2 

emissions in Norway, yet at the same time face a low effective carbon price. At the same time, 

the tax on CO2 is higher than the price of quotas, and over 90% of the effective average carbon 

price is determined by taxes and fees, while the rest is determined by the quotas. Therefore, the 

control group could have incentives to innovate in low-carbon technology as well.  

In Norway, energy-intensive industry receives CO2 compensation, to reduce the risk of carbon 

leakage. Carbon leakage is a risk that is discussed in the EU ETS design and is also one of the 

reasons why there are such a generous amount of free allowances. Carbon leakage means that 

some industries have a risk of re-allocating their production to other countries which have a less 

ambitious carbon pricing scheme, where the incentive is to reduce the price of production. If 

the carbon price is high for industries with a high risk of carbon leakage, the risk of moving 

https://www.ssb.no/natur-og-miljo/miljoregnskap/artikler/stor-variasjon-i-effektive-karbonpriser
https://www.ssb.no/natur-og-miljo/miljoregnskap/artikler/stor-variasjon-i-effektive-karbonpriser
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production increases, and the global CO2 emissions are not reduced. The Norwegian CO2 

compensation is given to 46 firms in 2020, where 2/3 of these are EU ETS regulated firms. In 

2020 2,5 billion NOK was provided to these 46 firms as a CO2 compensation (Slettebø, Randen 

and Grimstad 2021). In figure 3 we can see the distribution of CO2 compensation for regulated 

and not regulated firms. The scheme began in 2013, and my dataset is only available up till 

2017. The Y-axis represents the CO2 compensations in 1000 NOK over years in the X-axis.  

 

 

Figure 3: The CO2 compensation scheme for Norwegian firms 

Note: the figure plots the yearly CO2 compensation in 1000 NOK received by Norwegian firms. Data source: the Norwegian Environmental 

Agency. 

 

The key take-away from this chapter is that the effective price on carbon for the regulated firms 

is low, which can have implications for the incentives to innovate. I will discuss this further in 

the following chapter, where I present the theoretical framework of this thesis.  

3.Theoretical framework 
In this chapter I will discuss the framework of cap-and-trade systems, in terms of economic 

theory, and connect this theory with the implications of the empirical evidence of the EU ETS. 

In the second part of this chapter, I will discuss a theoretical framework for defining innovation 

and discuss the implications of these measures.   
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3.1 Cap-and-trade 
EU ETS is a cap-and-trade system. The goal of a cap-and-trade system is to reduce GHG 

emissions, by indirectly regulate the price of emissions by providing allowances for firms to 

trade with other firms. The allowances are allocated either by grandfathering (free allocation) 

or by auctions. However, the price of allowances is determined by the marginal abatement cost 

of firms, and not by allocation (Requate 2005). The cap in cap-and-trade denotes the amount of 

allowances available in the market, which ideally should be reduced over time, to generate 

incentives to further reduce emissions and adopt abatement technologies. In a cap-and-trade 

system, the number of permits is therefore crucial to obtain efficient outcomes (Weitzman 

1974)(European Union 2015). How the emissions are distributed among firms in a cap-and-

trade system, is therefore not relevant for the overall GHG reduction, as long as the total level 

of emissions is reduced. If one firm increases its emissions, another firm has to reduce its 

emissions. This implies that the number of permits cannot be too generous. Thus, the sum of 

permits indirectly determines the climate effect (Directive2003/87/EC) (Regjeringen 2020). By 

having fewer allowances in the market, the equilibrium price for allowances will increase, and 

over time the investment in green technology will increase (Holtsmark and Midttømme 2021). 

However, the number of permits has been one of the main criticisms of EU ETS (Klemetsen, 

Rosendahl and Jakobsen 2020).   

As opposed to a cap-and-trade system, a carbon tax regulates the price directly. In economic 

theory one can distinguish between market-based instruments and command-and-control 

regulations, where the latter implies direct regulations such as carbon taxes, and EU ETS is a 

marked-based system (Requate 2005). The European Commission proposed a carbon tax for 

EU in 1992, however, due to the asymmetric economic structures of EU countries, such a tax 

scheme was difficult to implement efficiently (European Commission 1992). Instead, with a 

cap-and-trade system, firms can achieve the lowest marginal cost of abatement to meet the cap. 

In other words: trading ensures that firms meet the same carbon price and that the emissions 

are reduced where it is the most cost effective. Over time, the number of allowances will be 

reduced in EU ETS, which will ensure that the incentives to adapt abatement technologies are 

strengthened over time (European Union 2015)(Requate 2005). 

3.2 Defining innovation 
It is crucial to understand the nature of innovation, to set a framework for this thesis, both in 

terms of selecting the variables of interest, but also to understand the results. There are multiple 

ways to measure innovation. Schumpeter (1942) argued that the core of any capitalist market 
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is competition, and competition provides incentives to innovate. However, it is crucial, 

according to Schumpeter, that the innovation activities are protected by intellectual property 

rights, such that the firms can achieve a temporarily monopolistic profit. If innovative ideas and 

improvements are free for everyone, there will not be any incentive to innovate since each firm 

will not gain by developing new technology (Schumpeter 1942). This argument suggest that 

the core of innovation is competition and monopolistic profits, due to property rights, i.e., 

patents. However, patents are rather rare compared to R&D expenditure, and patents could be 

viewed as successful R&D spending (Cornea and Ornaghi 2014). Leaving both R&D and 

patents as important measures of innovation, since patents are dependent on R&D expenditure, 

and, according to Schumpeter, the goal is to obtain a patent, i.e., monopolistic profits.  

The definition of innovation is debated, and especially in terms of what is defined as “green” 

innovation (Elkins 2010). A green innovation could be defined as adoption of technology 

already used by others (Kemp 2010). Calel rules out low-carbon adoption technology for 

patents, due to the reason that this is not “new” technology. In my research this is rather 

infeasible, since the sample size of low-carbon patents is low, and to remove these patents, the 

estimates could become rather unreliable. Therefore, I include low-carbon adoption 

technologies in my definition of green innovation. This is consistent with a broad definition of 

green innovation (Teixido, Verde and Nicolli 2019). In a study by Hagedoorn and Clood (2003) 

their findings suggest that there is an overlap between R&D and innovations, and they 

recommend that research could rely on either of these indicators to measure innovative 

performance of firms. I therefore conduct my analysis with both R&D expenditure and patent 

that include adoption technologies, to obtain a broader and more nuanced aspect of the 

innovation activities among regulated firms.  

4.Literature review 
Several studies have looked at the causal effect of EU ETS on emission as the outcome variable, 

but few studies have looked at the causal effect on low-carbon innovation. My master thesis 

contributes to this part of the EU ETS literature. I limit the literature review to contain only 

empirical research at firm or plant level, to construct an analytical framework for my thesis.  

Calel (2020) studied the effect on low-carbon patenting and R&D spending for regulated British 

firms in 2005-2012. In his study, he found that regulated firms have increased  low-carbon 

patenting and R&D spending by around 20-30%. The paper identifies low-carbon patenting as 

Cooperative Patent Classification (CPC) codes which are tagged with Y02, which is a general 
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tagging scheme developed by the European Patent Office (EPO) constructed to classify low-

carbon technological developments (Veefkind et.al. 2012). British firms regulated by EU ETS 

have on average greater annual profits, employees and emissions, therefore, to obtain a suitable 

control group, Calel construct a control group based on propensity score matching. As this 

thesis is conceptually inspired by the paper by Calel, I use the Y02 class of CPC codes to 

identify low-carbon patenting for Norwegian firms. As far as my knowledge goes, this 

classification of low-carbon patenting has not been applied in Norwegian microdata studies 

before1. Moreover, similar to Calel I divide between general R&D expenditure and green R&D 

expenditure, but contrary to Calel, I divide between different categories of green R&D 

expenditure, and I separate extramural and intramural R&D expenditure, to capture some 

essence of in-house versus outsourced innovation. While the low-carbon R&D expenditure is 

only available from 2008 in Calel’s data, thus infeasible to conduct a DiD where 2005 is the 

treatment year, I have a rich data from Statistics Norway, with environmental and climate 

related variables from 2001. Therefore, I can provide some further analysis on R&D 

expenditure, in addition to patenting behavior.  

The results from this master thesis contributes to understanding the causal effects of EU ETS 

for Norwegian regulated firms for the years 2001-2013. Klemetsen, Rosendahl and Jakobsen 

(2020) estimate the causal effects on emissions and economic performance for regulated plants 

in Norway. In their study, they find a negative effect on emission in phase II (2008-2012), but 

not a significant effect in other phases. To obtain an appropriate control group, they apply 

propensity score matching using psmatch2 in their DiD analysis. Moreover, they restrict their 

sample to manufacturing industries, but leave out extraction of crude petroleum and natural gas. 

Since this master thesis’ focus is on green innovation, my dependent variable will not be related 

to emission or energy-intensity. However, due to the value of comparison for studies done at 

microlevel in Norway I draw some inspiration by their paper. I restrict my sample to 

manufacturing industries, and I conduct a robustness check of 1:3 neighbors, similar to 

Klemetsen, Rosendahl and Jakobsen.  

There is an increasing literature that estimates the causal effects of EU ETS regulation on 

economic performance, however, the literature on green innovation is somewhat limited. In this 

part I present some recent papers regarded this subject, which I have drawn inspiration, and 

 
1 In Klemetsen, Bye and Raknerud (2018) they used International Patent Classification (IPC) codes to classify 
green patents. In correspondence with Brita Bye, I understood that CPC codes is now more preferred than IPC 
codes, since IPC codes might target a broader definition of green innovation. See chapter 5 for a more 
elaborate discussion of IPC and CPC codes.  
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which have been valuable reads for my analysis. Martin, Muûls and Wagner (2013) studied the 

effects on low-carbon innovation, in terms of R&D expenditure related to abatement 

technologies or energy consumption. They used data from interviews with managers from 770 

manufacturing firms in 2009, from six different countries in Europe. Their results suggest that 

most firms have climate-related innovations, while this is more related to process innovation, 

compared to product innovation. Moreover, they find that there is a negative causal effect of 

receiving free allocations on low-carbon innovation. This result is of some relevance to my 

study, since the effective carbon price for regulated firms, as seen in figure 2, is low. Therefore, 

this could have implications on the findings in my study. Rogge and Hoffmann (2010) did 42 

exploratory interviews with experts from the power generation technologies in Germany. Their 

main results were that EU ETS have an effect on the direction of technological change and 

technology development for large-scale and coal-based technologies. While this paper is not 

econometric, its results are crucial to understand the innovation activity from the innovators.  

Löfgren et. al. (2014) conducted a DiD estimation on whether EU ETS regulation for Swedish 

firms provided incentives to invest in low-carbon technologies. This study include all regulated 

sectors, as opposed to my analysis, over the years 2000-2008. Their main analysis suggest that 

there are no statistically significant estimations of low-carbon investments for regulated firms. 

Similar to my thesis, and what Calel (2020) suggest, it is somewhat difficult to obtain 

statistically significant estimates when sample size of innovation activities are low. However, 

in contrast to Löfgren et. al., I limit the scope of sectors to ensure some similarities within 

industries and to ensure that the control group is more similar to the treatment group, which is 

obtained with propensity score matching. My research design is therefore somewhat different 

from Löfgren et. al. 

The interest of understanding the causal effects of EU ETS is increasing, and several papers 

have done research one estimating the regulatory effect on emission reduction. In the following 

I will briefly present the evidence on emission reduction from relevant papers.  Petrick and 

Wagner (2014) estimated the effect on emissions, using plant-level data for German 

manufacturing firms in 2005-2010. Their evidence was not significant for phase I, while a small 

decrease in emissions in phase II. They conducted a DiD analysis with propensity score 

matching, which I will elaborate further in chapter 6.  Bel and Joseph (2015) estimated 

emissions level in the EU member states (defined prior to 2007), using a dynamic linear panel 

data regression, and found that the financial crisis from 2008 was the main reason for the 

reduction in emissions, for these states. Jaraitė and Di Maria (2016) analyzed a various number 
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of variables on economic performance, including investment behavior and CO2 intensity. Their 

results suggest a modest increase in investments in 2010, but not a reduction in CO2 emissions. 

I draw some inspiration of their methodology, which I discuss in chapter 6. 

Klemetsen, Bye and Raknerud (2018) have studied the effect of non-market regulations on 

green patents for Norwegian firms. Since this paper use the same dataset from the Norwegian 

Industrial Property Office (NIPO) as me, I have drawn crucial inspiration from this paper, to 

obtain a better understanding of the dataset on patent applications. They find that there is a 

significant effect on innovations from implicit regulatory costs obtained from threats of 

sanctions. However, they analyze the effect of direct environmental regulations on Norwegian 

patents. In contrast, EU ETS is an indirect regulation, which was discussed in chapter 3. Their 

sample of patent applications are therefore larger than mine, which makes it infeasible for me 

differ between granted patents and ungranted patents in their robustness checks, since this could 

cause unreliable estimates. They classify green-patent applications with IPC codes, which I will 

discuss in the next chapter. 

5. Data  
In this thesis I use panel data from Statistics Norway, the Norwegian Industry Property Office 

(NIPO) and the Norwegian Environmental Agency (NEA), where the key observational 

variable is organization number at firm-level. The main dataset covers 17 years, from 2001 to 

2017. For my analysis, I have four different outcome variables for measuring green innovative 

activity, but I also examine other outcome variables, such as all patent applications, extramural 

and intramural R&D expenditure. There are a total of 423 unique firms in my sample, where 

344 unregulated firms and 84 regulated firms in my dataset, in the industries of B and C in the 

Standard Industrial Classification 2007 (SIC 2007), over the two-digit NACE codes from 05-

33, which covers industries such as mining and quarrying, manufacturing of textiles, beverages, 

food, chemicals and metals. I exclude NACE code 06, extraction of crude petroleum and natural 

gas since the petroleum sector have a different regulatory context. Moreover, due to 

comparative value, since Klemetsen, Rosendahl and Jakobsen (2020) covers these industries as 

well.  

In the following I will present my method for measuring innovation activity and how I have 

classified these activities with either green or low-carbon labels. Since I have data on both 

patent applications and R&D spending, from NIPO and Statistics Norway respectively, I 

discuss each dataset isolated. I also present and discuss the dataset from the Norwegian 
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Environmental Agency (Miljødirektoratet, NEA), where I have the overview of regulated firms 

and emission levels.  

5.1 Patent applications 
The dataset from NIPO contains all patent applications from Norwegian firms by the 

application status at 23.04.18, over the years 1990-2017. There are 12,134 unique patent 

applications over these years. This dataset is merged with a dataset from Statistics Norway, by 

the firm organization number, with a complete list of CPC and IPC codes for each patent 

application. CPC and IPC codes are classification schemes provided by The European Patent 

Organization (EPO) to identify patents. To classify low-carbon patents using CPC and IPC 

codes, there are two potential strategies. The IPC Green Inventory classifies patents with 

environmental technologies, listed in the UNFCCC. This classification covers a range of topics, 

from transportation to agriculture, and nuclear power generation. The potential problem with 

this classification strategy, is that it might be too broad and capture more technologies than the 

ones that directly reduce emissions (World Intellectual Property Organization 2022). Therefore, 

I use the general tagging scheme Y02 for CPC codes similar to Calel (2020), which identifies 

new technological developments and low-carbon patents for mitigation and adaption 

technologies. The classification system is based on the abilities to reduce GHG emissions 

directly. Additionally, the Y02 class include technologies which aim to improve energy 

efficiency. The Y02 class by EPO is “the most accurate tagging of climate change mitigation 

patents available today” (Calel 2020) and has been developed in the framework of the Kyoto 

Protocol and the Paris Agreement (European Patent Office 2022)(Veefkind et. al. 

2012)(Patentstyret 2021). 

Each patent application can be tagged with multiple CPC and IPC codes, since the patent can 

be in multiple sectors and technologies at the same time. To obtain a panel data set, with only 

one observation per firm per year, I create a dummy variable that is equal to 1 whenever a firm 

has at least one patent application with a Y02 tag. Moreover, some firms have multiple patent 

applications per year, therefore I created a variable that summarize the total amount of low-

carbon patent applications per firm per year. These two variables provide different results in 

the regression results, since there are in general few patent applications in the data sample, but 

of the firms that innovate, some innovate heavily, where the range of yearly amount of patent 

applications is 1-41. Therefore, it is crucial to distinguish between these two effects.  

To get an idea of how the patent data looks like, I present two figures of all patent applications 

in Norway, i.e., this is not limited to the firms of my sample. In figure 4 we can see the evolution 
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of patent applications among Norwegian firms. There are 12,134 patent applications between 

1991 and 2017, where 1,261 of the patent applications contains at least one low-carbon 

classification according to Y02, which is 10,39% of the total patent applications. In figure 4 I 

present only low-carbon patent applications, to better see the evolution, not related to regular 

patent applications. As we can see, the number of low-carbon patent applications has in absolute 

terms increased among Norwegian firms, between 1990 and 2017, which is easier to see in 

figure 5 than in 4.  

 

Figure 4: Evolution of all patent applications among Norwegian firms 

Note: the figure plots the average yearly number of patent applications among all firms in Norway, separated between all types of patent 

applications and low-carbon patent applications. Dataset: Norwegian Industry Property Office. 

 

Figure 5: Evolution of low-carbon patent applications among Norwegian firms 
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Note: the figure plots the average yearly number of low-carbon patent applications among all firms in Norway, classified by the Y02 class for 

CPC codes. Dataset: Norwegian Industry Property Office. 

In my dataset, I cannot distinguish between patents of great significant and those which are less 

significant. It could be that some of the patent applications have little value. However, similar 

to Klemetsen, Bye and Raknerud (2018) I am not interested in the value of the patents, but the 

innovation activity itself. Therefore, I do not distinguish between the application status for the 

patents. As patent applications are costly, it is unlikely that a firm would allocate resources to 

a patent application if it were not realistic (Dechezleprêtre et. al. 2011). Moreover, I cannot 

control for why the patent application was denied in the first place. Therefore, by controlling 

for granted patent applications could potentially add more concerns to the interpretation of the 

results, than what is fruitful for the analysis.  

5.2 R&D expenditure 
The other dataset to measure innovation activity is a dataset from the R&D-survey 

(Indikatorrapporten: FoU- og innovasjonsstatistikken for næringslivet) from Statistics Norway. 

This data is rich and contains a variety of aspects of innovation and  contains information about 

intramural and extramural R&D expenditure, R&D personnel and environmental aspects of 

R&D, as well as numerous interesting variables that I have not included, such as the female 

share of R&D personnel, cooperation with other firms, funding sources and the division 

between process and product innovation. In the original dataset there are 26,886 unique firms 

over the years 1997-2017. The panel data is unbalanced, since the survey is based on a sample 

of selected firms (i.e., not obligated for all firms conducting R&D activities) and there are some 

variables that change over time. This is especially the case for the green variables. In 2001 and 

2003 there are two variables of interest, relating to environmental technology (miljøteknologi) 

and energy usage. These two variables merge in 2005-2006, where there is only variable of 

interest. This merge could potentially be problematic since energy usage does not necessarily 

mean renewable energy. However, I find it necessary to include, since I cannot divide this joint 

variable into subcategories. Therefore, I include the energy variable for 2001+2003 as well. I 

control for the energy usage when I divide the overall variable into several subcategories. From 

2007 there 5 relevant variables, for renewable energy, other environmental related energy 

aspects (miljørelatert energi), climate research (klimaforskning), CCS-technology (CO2-

håndtering) and other environmental research (miljøforskning). These five variables are 

consistent till 2012, the variable for climate research is changed with “other climate research 

and technology”. These variables are consistent till 2015. In 2015 there are seven relevant 

variables, where two new are added related to 1) climate technology and other abatement 
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technologies and 2) climate adjustments. These seven variables are consistent till 2017. All 

these variables are expressed as the share of intramural R&D expenditure in percent. 

In the analysis, I created a variable that is the total share of all these variables, per firm per year, 

to capture the development of green intramural R&D expenditure expressed in 1000 NOK. I 

divide this variable further into subcategories for 1) energy related expenditure and 2) research 

and technology. Moreover, I generated a dummy variable that is equal to 1 if a firm had green 

intramural R&D expenditure.  

Since the variables change over time, the estimates might come with some uncertainty. Similar 

to Calel, this data is survey-based, and as he suggests, the sampling frame of surveys are not 

necessarily corresponding with the sample of firms of interest. Moreover, there could be some 

misunderstandings when firms fill out the survey. There are manuals provided to the firms, 

however the Research Council suggests that there still might be misunderstandings in the 

dataset. Needless to say, this can affect the estimates of my analysis, since the data does not 

necessarily reflect the true R&D spending of the firms in my sample. However, as Calel (2020) 

also argues, the results can still be read as suggestive, while not definitive.  

In the analysis I have four main outcome variables: 1) a dummy variable for low-carbon 

patenting, which is equal to 1 if a firm had (at least one) low-carbon patents per year 2) a 

continuous variable of all low-carbon patent applications per year per firm, 3) a dummy variable 

for green intramural R&D expenditure, which is equal to 1 if a firm had expenditure in green 

R&D for a given year, and 4) a continuous variable of all green intramural R&D expenditure, 

which captures the total share of green R&D of the intramural R&D expenditure in 1000 NOK.  

5.3 EU ETS dataset and the main sample  
In my analysis I am interested in the causal effect of EU ETS regulation on green innovation. 

Therefore, I will limit the sample to include only EU ETS regulated firms and a control group 

conducted by the firms that are subject to quotas from a dataset provided by NEA. I discuss the 

implication of control group in chapter 6. The variables in this dataset include a dummy for EU 

ETS regulation for all phases and emissions released by firms, for both regulated and not 

regulated firms. To obtain information about firms’ characteristics, I merge this dataset with 

the plant- and firm dataset (VOF) provided by Statistics Norway. The dataset by NEA has the 

plant-level organizational number as the key observational variable. Since innovation activity 

takes place at the firm-level, I must aggregate this data up from plant-level to firm-level. Firms 

are the judicial unity that collects all plants in one institutional unity. A firm can have multiple 

plants, for example in different geographic locations or industry areas (Berge and Grini 2014). 
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EU ETS regulation takes place at plant-level, and each firm can have multiple plants, where 

one can be regulated and the other can be not-regulated. To solve this issue, I define each firm 

that has at least one plant which is regulated, as a regulated firm. This is also to solve a potential 

spillover problem in the regression analysis, which I discuss in chapter 6.  

 

Figure 6: EU ETS regulated firms over two-digit industries  

Note: The figure plots the sum of EU ETS regulated firms over the two-digit industry codes in my data sample. Data from the Norwegian 

Environmental Agency. I have removed observations < 3 due to confidentiality. 

In figure 8 we can see the overview of EU ETS regulated firms over the scope of the two-digit 

industry codes in my analysis. EU ETS regulation is determined by the type of pollution, 

capacity limit and plant activity, it is crucial to understand which industries the regulated firms 

are registered in (Directive 2003/87/EC). Industry 24, manufacturing for basic metals, stands 

out as the industry with the highest share of firms. There are 13 two-digit industries with EU 

ETS regulated firms in this sample, covering industries as manufacturing of food (10), 

beverages (11) leather (15) and chemicals (20)2. 

In figure 9 we can see the share of not-regulated firms over two-digit industry codes. Industries 

10, 15, 20 and 24 stand out as the industries with the highest share of unregulated firms in the 

sample, while there are more industries covered for unregulated firms, with a total of 26 two-

digit industries. The share of firms in industries is important to keep in mind when conducting 

the empirical approach, which I will discuss in chapter 6.  

 

 
2 See the Standard Industrial Classification 2007 (SIC 2007) for an overview of all NACE codes 
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Figure 7: Not-regulated firms over two-digit industries 

Note: The figure plots the sum of not regulated firms over the two-digit industry codes in my data sample. Data from the Norwegian 

Environmental Agency. I have removed observations < 3 due to confidentiality. 

6.0 Research design  
The overall goal in this thesis is to estimate the causal effect of EU ETS regulation on green 

innovation, where the counterfactual is understood as the absence of EU ETS regulation. Since 

I want to identify the causal effect, I must exploit the design of EU ETS to find an appropriate 

empirical approach. I apply a Difference-in-Differences (DiD) estimation to compare the green 

innovation activity between EU ETS-regulated firms and non-EU ETS regulated firms. DiD is 

a common research design used to evaluate causal effects of policy interventions, where an 

important assumption is that in the absence of treatment, the average outcomes for treated and 

comparisons groups would have followed the same trends over time. The DiD method is an 

estimation of the changes in a dependent variable over time, between a treatment group and a 

control group, by comparing the outcomes ex ante and ex post treatment between the groups. 

Moreover, by conducting a DiD with fixed effects, one can control for time invariant factors, 

which changes over time, but are constant across groups. Ideally, the research design should be 

a randomized control trial, where the groups are randomly assigned treatment. Therefore, ideal 

randomized experiments can estimate the causal effect, due to treatment assignment leads to 

exchangeability (Angrist and Pischke 2009)(Gertler et. al. 2016)(Hernan and Robins 

2020)(Stock and Watson 2014).  
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The treatment criteria of EU ETS are not randomly assigned, but is based on industry 

classifications, capacity limits and plant activity (Directive 2003/87/EC). I do not observe the 

capacity limits the plants in my sample. When the treatment is not randomly assigned, the 

empirical method is not straightforward, and it is therefore necessary to discuss different methods 

and their implications to obtain a suitable research design. Other empirical EU ETS studies have 

applied different econometric approaches to identify the causal treatment effect of regulation 

(Martin, Muûls and Wagner 2016)(Jaraite and Di Maria 2016), which I will discuss in more detail 

in this chapter.  

6.1 Treatment effect  
To understand which method that is the most suitable for the case of EU ETS regulation, it is 

important to understand how an ideal research design for experiments look like, and where my 

study deviates from the ideal. The ideal research design conducts a complete randomized 

assignment, where the treatment and the control group follow the same trend prior to treatment 

(Angrist and Pischke 2009). The basic DiD equation measures the differences before and after 

the treatment, for the treatment and the control group. The basic DiD equation measures the 

differences before and after the treatment, for the treatment and the control group. The DiD 

estimate is formally expressed: 

 

𝛽 = (𝑌̅𝑡,𝑎𝑓𝑡𝑒𝑟 − 𝑌̅𝑡,𝑏𝑒𝑓𝑜𝑟𝑒) − (𝑌̅𝑐,𝑎𝑓𝑡𝑒𝑟 − 𝑌̅𝑐,𝑏𝑒𝑓𝑜𝑟𝑒) 

𝛽 = ∆(𝑌̅𝑡, − 𝑌̅𝑐) 

(6.1) 

 

The notation is formally adopted by Stock and Watson (2015) where (𝑌̅𝑡,𝑎𝑓𝑡𝑒𝑟 − 𝑌̅𝑡,𝑏𝑒𝑓𝑜𝑟𝑒) 

denotes the difference between ex post and ex ante treatment for the treated group in the 

outcome variable, and (𝑌̅𝑐,𝑎𝑓𝑡𝑒𝑟 − 𝑌̅𝑐,𝑏𝑒𝑓𝑜𝑟𝑒) denotes the difference between ex post and ex 

ante treatment for the control group in the outcome variable, in case both which we observe in 

a true experiment. While these types of experiments are not common for economic studies, 

economists do quasi-experiments, which implies that the treatment is “as-if randomly 

assigned.” In quasi-experiments randomness conducted by statistical strategies, like propensity 

score matching (Angrist and Pischke 2009)(Stock and Watson 2015). By naively comparing 

the outcome between the treated and the control group, one may obtain a misleading estimate 
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of the treatment effect, due to the omitted variable bias (Angrist and Pischke 2009)(Woolridge 

2010). It is therefore more suitable to include a selection bias.  

To estimate the average causal effect (ATE): 

𝐸[𝑌𝑖|𝐷𝑖 =  1]  −  𝐸[𝑌𝑖|𝐷𝑖 =  0]  = 𝐸[𝑌1𝑖|𝐷𝑖 =  1]  −  𝐸[𝑌0𝑖|𝐷𝑖 =  1] 

                                                                           + 𝐸[𝑌0𝑖|𝐷𝑖 =  1]  −  𝐸[𝑌0𝑖|𝐷𝑖 =  0] 

(6.2) 

 

This notation is formally adopted by Angrist and Pischke (2009). Where the first expression is 

the observed differences in the outcome variable, which is the sum of the average treatment 

effect on the treated (ATT or ATET) and the selection bias. 𝑌1𝑖 denotes the treated group, while 

𝑌0𝑖 denotes the untreated group. This equation implies that when there is a correlation between 

selection bias and the outcome variable, there will be a selection problem. Ideally, one would 

overcome the selection bias to ensure that the effect of treatment could be causally linked to the 

treatment (Angrist and Pischke 2009).  

The problem with selection biases is that it could cause to misleading estimates of the causal 

effects, if there are unobserved differences between the groups that can affect the differences 

in outcomes after treatment. In the absence of treatment, the treatment group should ideally 

follow the same trend, which is the counterfactual of the causal treatment effect of the treated 

group (Angrist and Pischke 2009)(Woolridge 2010). In the following I will elaborate on the 

potential selection biases and how I can strategically reduce and overcome them.  

6.2 Identification strategy 
In randomized experiments the treatment and control group are more likely to be similar pre-

treatment, while for quasi-experiments it could be misleading to compare outcomes, due to the 

possibility of having systematically differences in characteristics pre-treatment, which 

randomization ensures (Angrist and Pischke 2009)(Rosenbaum and Rubin 1983). Since EU 

ETS regulation is based on emissions, capacity limits and industry affiliation, there will be 

selection biases if I had conducted a DiD analysis on the original sample. However, there are 

statistical strategies to cope with the selection bias. The most crucial assumption is the parallel 

trend assumption, which states that the control group and the treatment group must have the 

same parallel trends prior to treatment takes place (Hernan and Robins 2020)(Stuart 2010). This 

does not mean that the treatment and control group must have the same means in the outcome 
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variable, but that the trend is moving in the same direction in the pre-period. However, this 

assumption is difficult to fulfill. There is no statistical method to ensure that this assumption 

holds, and one must therefore visually inspect the observations. The intuition goes as follows: 

in absence of a treatment effect, the two groups would follow the same trend in outcome. If the 

outcomes change after the time of treatment, then we could argue that the treatment is the cause 

of the change in outcomes. Violation of parallel trend assumption will lead to biased estimation 

of the causal effect (Stuart 2010)(Ryan et. al. 2018). Examining the parallel trend assumption, 

I will visually inspect the outcome variables pre and post matching controls.  

In figure 8 we can see the trend for the binary outcome for low-carbon patent applications. The 

Y-axis is the average yearly share of firms which had at least one low-carbon patent application 

over years from the X-axis. In other words: this is not the total amount of low-carbon patents, 

which is expressed in figure 9. The green line indicates when treatment was officially in 

operation in Norway, from 2008. Following the movements up till phase II begins, we can see 

that the average share of firms having at least one low-carbon patent application among 

unregulated firms are moving more steadily, while for the regulated firms the graph is more 

fluctuating. A crucial reason for this is that there are few low-carbon patents in the first place. 

From the graph we can see that for the regulated firms, there are 2-8% of the regulated firms 

that have had a low-carbon patent, while 1-2% of the regulated firms that have had a low-carbon 

patent.   
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Figure 8: Average number of firms having at least one low-carbon patent 

Note: this figure plots the average number of firms with at least one low-carbon patent application over the years, divided between the 

regulated and not regulated firms in the sample. Data source: Norwegian Industry Property Office and the Norwegian Environmental Agency 

 

Figure 9 measures the annual average number of low-carbon patent applications, where the 

number of patents are expressed in the Y-axis over years in the X-axis. From the graph we can 

see that the two top points for an average yearly number of low-carbon patents are in 2010 and 

2016 for the EU ETS firms, with an average of 0.25 low-carbon patents in the regulated groups 

for these two years, while the bottom point for the EU ETS group is in 2005 with ca. 0.025 

patents for the firms in this group that year. While for the unregulated firms, the average is more 

stable, moving from ca. 0.01 to 0.03 in the entire scope of years. The numbers are low on 

average, since there are few firms that have low-carbon patent applications, as seen in figure 8. 

As mentioned in chapter 5, the annual range goes from 1 to 7 low-carbon patents per year. 

While for regular patents the range goes from 1 to 41, meaning that there are some firms that 

innovate more heavily than others.  
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Figure 9: Average annually number of low-carbon patent applications 

Note: this figure plots the average number of low-carbon patent applications over the years, divided between the regulated and not regulated 

firms in the sample. Data source: Norwegian Industry Property Office and the Norwegian Environmental Agency 

 

Both in graph 8 and 9 we can see that the trends between the regulated and not regulated firms 

are somewhat different prior to 2008. Since the parallel trend assumption is crucial to be 

fulfilled for a reliable causal regression estimation, however, it might be difficult to obtain a 

completely parallel trend for the low-carbon patent applications, since the sample size is so low. 

This problem has also been discussed by Calel (2020). While a propensity score matching can 

trim the sample to obtain a sample of two groups that are more similar, based on the covariates 

that is chosen, trimming the sample can come with some loss of sample size of the patents. In 

other words: by reducing the sample, I might lose some of the patents as well, which will of 

course affect how the trends move and the reliability on the estimation results, since there are 

so few patents in the first place. I will discuss this further in chapter 6.3 

In figure 10 we can see the average yearly share of firms that have invested in green intramural 

R&D expenditure on the Y-axis over the years, based on a dummy variable which captures 

whether a firm invested in green R&D expenditure. In 2017, almost 50% of the regulated firms 

invested in green R&D, while from 2001 to 2008 around 30% of the regulated firms invested 

in green R&D. For the unregulated firms, ca 12-15% of the firms invested in green R&D 
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between 2001 to 2008. In 2017, around 25% of the firms had green R&D expenditure. By 

visually inspecting figure 18, it could be argued that the parallel trend assumption, to some 

degree, holds for the pre-period, since the groups move in the same direction up till 2008.  

 

Figure 10: Average yearly share of firms that has green intramural R&D expenditure 

Note: this figure plots the average number of firms with green intramural R&D expenditure over the years, divided between the regulated 

and not regulated firms in the sample. Data source: Statistics Norway and the Norwegian Environmental Agency 

 

In figure 11 we can see the average yearly green intramural R&D expenditure, expressed in 

1000 NOK for both groups. The Y-axis represents the total 1000 NOK, while the X-axis 

represents years. From 2001 to 2008 the average yearly green intramural R&D expenditure for 

regulated firms is between 2,000,000 and 6,000,000 NOK, while from 2013 to 2015 there is a 

big increase, up to 15,000,000 NOK, which is mainly driven by one large investment by one 

firm.  
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Figure 11: Average yearly green intramural R&D expenditure, 1000 NOK 

Note: this figure plots the average amount of green intramural R&D expenditure in 1000 NOK over the years, divided between the regulated 

and not regulated firms in the sample. Data source: Statistics Norway and the Norwegian Environmental Agency 

 

As mentioned in chapter 5, a potential problem with the variables from the R&D dataset is that 

the survey is not time-consistent, i.e., some years the survey did not have thematic categories 

for intramural expenditure and that variables change over time. The implications of this is that 

it makes it tricky to estimate the parallel trend assumption correctly. The variation could cause 

to misleading interpretation of the outcome variable.  

Based on the inspection of the graph, it could be argued that  the parallel trend assumption is 

violated for figure 11, since the regulated and the unregulated do not follow the same trend 

prior to 2008. Moreover, figures 8 and 9 also suggest that there potentially could be a violation 

of the parallel trend, while figure 10 seems to move in the somewhat same direction. I must 

therefore conduct a statistical strategy to reduce these differences. Since there are so few firms 

that have either patents or intramural R&D spending, the parallel trend assumption is hard to 

fulfill completely. However, the parallel trend assumption is crucial to fulfill to be able to 

identify causal effects (Hernan and Robin 2020). I will discuss how I can estimate the 

counterfactual outcome, i.e., a suitable control group, by propensity score matching in chapter 

6.3. 
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Another crucial assumption is that there must not be any spillover effect (interference) between 

the treated and the control group. This is also called the stable unit treatment value assumption 

(SUTVA) (Angrist, Imbens and Rubin 1996)(Hernan and Robins 2020)(Woolridge 2010). I 

conduct the analysis on firm level, due to all innovative activities take place at firm-level, but 

also to internalize some potential spillovers from plants. A firm can have multiple plants, which 

is the case in my dataset. There could therefore be some potential spillover effects between a 

regulated plant and a not-regulated plant inside the same firm, which would cause a bias in the 

estimation (Petrick and Wagner 2014). I have therefore defined all firms that have at least one 

regulated plant as a regulated firm, to internalize the potential spillover effect. However, there 

might be some other spillover effects between firms. As mentioned in chapter 2, the effective 

marginal carbon price has been low for the regulated industries, while higher for other industries 

which are faced with the Norwegian CO2 tax. If abatement technological innovations 

conducted by the regulated firms are available for not-regulated industries, which have high 

rates of emissions and also face a higher carbon price, this might lead to some spillover effect 

between regulated and not-regulated firms. I cannot control for this in my analysis, thus, to 

ensure that SUTVA holds completely might become problematic.  

6.3 Propensity score matching 

6.3.1 Discussion of method  
Abadie (2005) has a proposed solution to when there are differences between the treatment and 

control group prior to treatment. Propensity score matching is a strategy to remove or minimize 

biases in quasi-experiments where the treatment is not randomized and is a popular strategy to 

estimate causal inference in absence of random assignment (Caliendo and Kopeining 2008). 

The propensity score estimates the probability of a unit (a firm in this analysis) to be assigned 

treatment based on covariates. To estimate the probability of treatment, it is therefore crucial to 

understand how the treatment is assigned in the first place. When we understand the selection 

criteria, we can easier choose the covariates to estimate the probability of treatment, hence 

obtaining a better estimation of the treatment probability (Stuart 2010)(Austin 

2011)(Rosenbaum and Rubin 1983). The results of the propensity score matching estimation is 

based on the covariates that are chosen, hence the more we know about the selection criteria, 

the better the estimation will be. There is a trade-off between sample size and biasedness. By 

including many covariates to approximate the selection criteria as much as possible, it is also 

more difficult to obtain exact matches (Stuart 2011). There are multiple matching strategies that 
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I can conduct in my thesis. It is therefore important to get an overview of the potential 

implications of each strategy, prior to selecting the preferred strategy.  

Petrick and Wagner (2014) conduct a 1:1 matching with replacement as their main strategy, 

which implies that one control firm can be matched with multiple treatment firms. As a 

robustness test, they estimate a 1:20 matching. The effect of using 1:M matching is not 

necessarily straightforward, since oversampling of control firms could reduce the estimate 

variance, i.e., the control group fits the treatment group better per firm in the control group, 

based on the covariates. However, the potential problem with using many neighbors, may lead 

to a smaller sample of control firms and the bias can be higher. Petrick and Wagner differs 

between process-regulated industries, due to the selection criteria of EU ETS regulation. This 

leads to a potential comparison between paper production and steel production. The covariates 

for propensity score matching include CO2 emissions, profits, exports, employees and wage 

rate. Jaraite and Corrado Di Maria (2016) also conduct a 1:1 matching with replacement, and 

they argue that there is a trade-off between bias and variance in terms of allowing for 

replacement. They argue that it is more appropriate to use replacement since there are great 

differences between regulated and unregulated firms, hence a 1:1 matching without replacement 

could create a control group that is not that similar to the treatment group.  Klemetsen, 

Rosendahl and Jakobsen (2020) also use propensity score matching to obtain a control group 

of firms that are not regulated by EU ETS. They conduct matching based on covariates from 

2001, and they require exact match on emission source and industry affiliation at a two-digit 

level. Moreover, they include the level of emissions, profits and number of employees as 

covariates to approximate the selection criteria, respectively for capacity limit and plant size. 

In their main analysis they do a 1:10 nearest neighbor matching, and 1:3 nearest neighbor 

matching as a robustness check.  

Following Jaraite and Corrado Di Maria (2016) and Petrick and Wagner (2014) I conduct a 

propensity score matching with 1:1 and replacement. Similar to Klemetsen, Rosendahl and 

Jakobsen (2020) I conduct a 1:3 matching as a robustness check, to allow for multiple control 

firms to be matched with a treatment firm. I choose replacement in the main analysis since 

matching with replacement generates a higher quality of matching, and a decreased bias, since 

the algorithm choose the firms from the control group that fit the treatment group the best, based 

on the covariates chosen. However, the sample of control group could become small, since the 

control firms could be matched with several treatment firms. This implication is crucial to keep 

in mind when conducting propensity score matching. The propensity score matching is only as 



31 
 

good as the choice and quality of the covariates, and since the EU ETS regulation already 

implies that the regulated firms are the biggest emitters, it is with low probability that one will 

obtain a ”perfect” control group after matching. However, the propensity score matching will 

find the closest non-regulated firms. This is a crucial difference and is important to keep in 

mind when reading the results of this thesis, since there might be some unreliability of the 

estimates due to differences between the treatment and control group (Jaraite and Corradi Di 

Maria 2016)(Rosenbaum and Rubin 1983). 

To approximate the selection criteria, I follow Klemetsen, Rosendahl and Jakobsen (2020), 

Calel (2020) and Petrick and Wagner (2014) by choosing variables that imply capacity limits 

and production activity, i.e., number of employees, profits and CO2 emissions. Since the 

selection criteria is based on industry specific thresholds, I choose to run a loop over each two-

digit NACE code to match firm based on these covariates. In this way I can match my entire 

sample and create a control group that is more similar to the treatment group. I obtain two 

different matching control groups: 1) based on covariates employees, emissions and profits, 2) 

a loop over each two-digit industry code where there are at least one regulated and one not-

regulated firms, on the same covariates. I divide between these two strategies, since running an 

industry loop might lose some generalizability, since the estimates will only be valid for the 

relevant industries that is included in the weights. Moreover, I include a regression adjustment 

with propensity score weighting, which is doubly robust since is sufficient that either the 

regression model or the propensity score method are correctly specified (Angrist and Pischke 

2009). As a robustness check I conduct a 1:3 propensity score matching, with inverse propensity 

score weighting and common support.   

6.3.2 Results from matching 
The propensity score matching is conducted by the Stata command psmatch2 by Leuven and 

Sianesi. I have conducted matching based on the pre-period 2001-2003. There are several 

reasons why I chose this pre-period for matching. First of all, the allocation of allowances in 

Norway was based on emission levels in 1998-2001, therefore I want to be as close as possible 

to approximate the selection criteria appropriately. Second of all, it was signaled by the 

Norwegian government in 2001 that EU ETS was going to be ratified (Klemetsen, Rosendahl 

and Jakobsen 2020). To ensure that there has not been a reallocation of production to come 

below the threshold, it seems appropriate to matching from this year. However, Dechezleprêtre 

and Calel (2016) argue that firms will have little incentives to reallocate production, to reduce 

emissions per plant to avoid regulation, since this is relatively more costly than the price of 
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allowances and regulation. Third of all, since it was voluntary for Norwegian firms to 

participate in EU ETS from 2005, it is possible that there has been a weak treatment effect prior 

to 2008 (Klemetsen, Rosendahl and Jakobsen 2020). And lastly, since the variables for profits 

and employees are sometimes missing or registered with 0 in the dataset, (which I have not 

changed from the original dataset), I choose to match with multiple years, to obtain more firms 

based on these covariates. When I match based on covariates that are missing for some firms, 

these firms will most likely not be in the matched sample. However, if these observations are 

not supposed to be missing, but in reality are higher, then the results of the matching could lose 

some reliability. 

In figure 12 we can see the average yearly green intramural R&D expenditure for the matched 

sample, based on the covariates, but not restricted to industries. The pre-trend is more parallel 

in this figure, compared to figure 11. However, it is not possible to conclude that the parallel 

trend assumption holds, but it is possible to argue that based on the trend in this outcome 

variable, the trend seems to be more parallel than in the original sample from figure 11. 

 

 

Figure 12: Average yearly green R&D expenditure, 1000 NOK 

Note: this figure plots the average amount of green intramural R&D expenditure in 1000 NOK over the years, divided between the 

regulated and not regulated firms in the sample from propensity score matching based on covariates of profits, employees and CO2 

emissions. Data source: Statistics Norway and the Norwegian Environmental Agency 
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In figure 13 we can see the results for the matched sample with industry affiliation. Here the 

results have changed, the pre-treatment trend for unregulated firms are more stable, up till 2007. 

While in figure 12, there was a slight increase in 2005. However, the trend seemed to be more 

parallel in graph 12, than 13. These two graphs implies that the matched samples might have 

some different affect on the regression output. This is also exemplified by tables 4 and 5 

presented later in this chapter.  

 

Figure 13: Average yearly green R&D expenditure, 1000 NOK, matched sample within industries  

Note: this figure plots the average amount of green intramural R&D expenditure in 1000 NOK over the years, divided between the 

regulated and not regulated firms in the sample from propensity score matching based on covariates of profits, employees and CO2 

emissions within each two-digit industry. Data source: Statistics Norway and the Norwegian Environmental Agency 

 

Since there are so few low-carbon patents, I find it infeasible and unnecessary to visually inspect 

the parallel trends of this variable, which will be obvious from table 3-5. Table 1 shows the 

descriptive statistics of firms’ characteristics in 2001-2003, before matching. While table 2 

shows the descriptive statistics of firm’s characteristics in the same period, but for the matched 

sample based on industry loop. The frequency in both tables is firm-year observations. On 

average, the regulated firms have a higher number of employees, profits and emissions, 

compared to the unregulated sample. In both tables, I have chosen to include the mean, median 

and maximum value for profits, employees and emissions of CO2, since these are the covariates 

I use in the propensity score matching to approximate the selection criteria. The means are 

higher than the median, which implies that the distribution in the sample is positively skewed. 



34 
 

Therefore, I included the maximum value for all of these variables, to obtain some information 

about how skewed the samples are.  

Table 1: descriptive statistics of firm’s characteristics in 2001-2003 

 EU ETS 
2001-2003 0 1 Total 

Frequency                420                129                549 
Firms 198 61 259 
    
Mean    
  Profits  568,254   4,051,618   1,388,687 
  Employees  230  584  313.1239 
  Emissions, CO2  5  289  71.31764 
Median    
  Profits    162,093    614,979    245996 
  Employees     109       311     123.5 
  Emissions, CO2     .21        53      .552 
Maximum value    
  Profits  1.14e+07  1.86e+08  1.86e+08 
  Employees      2031     10119     10119 
  Emissions, CO2     185  10052  10052 

Note: Summary statistics for regulated and unregulated firms in 2001-2003, based on the full sample. Data source:  Statistics 

Norway 

In table 2 we can see the descriptive statistics of firm’s characteristics in 2001-2003, after 

matching. This matched sample is based on 1:1 with replacement on the covariates employees, 

profits and CO2 emissions, over a loop for each two-digit industry code. In table 2, the average 

in employees, profits and emissions are now higher for the unregulated firms, due to the 

assumptions of the selection criteria. Therefore, the control group is now somewhat more 

similar to the treatment group, relative to table 1. The absolute difference between the regulated 

and the unregulated firms are, on average, reduced in the matched sample based on the 

covariates.  

Table 2: descriptive statistics of firm’s characteristics in 2001-2003 in matched sample  

 EU ETS 
2001-2003 0 1 Total 

Frequency                36                118                154 

Firms 24 56 80 

 
Mean    

  Profits  1,697,510   4,051,618   2320410 

  Employees  571  585   379.056 

  Emissions, CO2  84  300  162.5195 

Median    

  Profits    1,119,285  614,979    298114 

  Employees        336       311       117 

  Emissions, CO2        50        52    13.875 

Maximum value    

  Profits   6169731  1.86e+08  1.86e+08 

  Employees      1136     10119     10119 

  Emissions, CO2     185  10052  10052.21 

Note: Summary statistics for the regulated and unregulated firms, 2001-2003. Data source: Statistics Norway 
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Table 3-5 report the summary statistics for the variables that measure innovation activity, for 

the period 2001-2007. Table 3 reports the statistics for the full sample, table 4 is restricted to 

the matched sample conducted on matching based on only covariates, while table 5 reports the 

statistics for the matching on covariates with an industry loop. These three tables provide crucial 

information before conducting the regression.  

Table 3: descriptive statistics of firm’s innovation activities in 2001-2007, full sample 

Full sample EU ETS 
 0 1 Total 

Mean    
  Intramural R&D 1000 NOK 5784 30866 12257 

  Extramural R&D 1000 NOK 3305 29856 12193 

  Green R&D 1000 NOK 285 2173 772 

    

Total    

    
Firms with patent 32 24 56 
Firms with low-carbon 
patents 6 10 16 

    
Patents 62 147 209 
Low-carbon patents 6 18 24 
    
Firms with green R&D 
expenditure 82 64 146 

Note: Summary statistics for the regulated and unregulated firms, 2001-2003. Data source: Statistics Norway 

 

In table 3 we can see that regulated firms have on average more intramural, extramural and 

green R&D expenditure. However, there are more unregulated firms that have patent 

applications and green R&D expenditures compared to the regulated firms. We can also see 

that there are not many low-carbon patents in this period, where there are only a total of 16 in 

the entire sample. In table 4 we can see the statistics for the matched sample on covariates 

employees, profits and CO2 emissions. The total NOK for intramural and green R&D has 

increased for both groups. However, the number of firms with low-carbon and regular patents 

has decreased for the control group. The reduction in the number of patents and low-carbon 

patents for the regulated firms suggest that these patents (those who are now dropped from the 

sample) belongs to firms that are not similar to the treatment group, based on the covariates that 

I used in the propensity score matching. This reduction is even greater in table 5.  
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Table 4: descriptive statistics of firm’s innovation activities in 2001-2007, matched samples, covariates 

Matched samples, covariates EU ETS 
 0 1 Total 

Mean    

  Intramural R&D 1000 NOK 6748 35113 14543 

  Extramural R&D 1000 NOK 3237 29329 1241 

  Green R&D 1000 NOK 335 2468 921 
    

Total    

    

Firms with patent 27 24 51 
Firms with low-carbon 
patents 5 10 15 

    

Patents 57 147 204 
Low-carbon patents 5 18 23 

    
Firms with green R&D 
expenditure 75 64 137 

Note: Summary statistics for the regulated and unregulated firms on matched sample on covariates , 2001-2003. Data source: 

Statistics Norway 

In table 5 we can see that there are no low-carbon patents for the control group. Moreover, the 

number of regular patents are also reduced for the control group. However, the variables for 

R&D expenditure has increased, which suggests that the propensity score matching might fit 

better for the R&D data, than for the patent data. It is important to understand that the matched 

sample based on the industry loop will lose some generalizability outside of the scope of 

industries kept in the matched sample. Moreover, since the assumptions I have made may not 

be true to reality, the sample conducted by matching may not necessarily be reliable estimates 

of the selection criteria (Gertler et. al. 2016).  

Table 5: descriptive statistics of firm’s innovation activities in 2001-2007 in matched sample, industry affiliations 

Matched sample, covariates EU ETS 
 0 1 Total 

Mean    

    

  Intramural R&D 1000 NOK 15347.06 35113.18 26845.82 

  Extramural R&D 1000 NOK 3884.218 29329.88 17980.01 

  Green R&D 1000 NOK 502.9688 2468.18 1646.213 

    

Total    

    

Firms with patent 2.84264 24 23.3715 

Firms with low-carbon 
patents 0 10 7.30361 

    

Patents 2.84264 147 113.206 

Low-carbon patents 0 18 13.1465 

    

Firms with green R&D 
expenditure 13.8579 62 73.7665 
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Note: Summary statistics for the regulated and unregulated firms, matched samples on covariates profits, employees and CO2 

emissions on two-digit industry loop, 2001-2003. Data source: Statistics Norway 

7.0 Results  
In this chapter I present the results of EU ETS regulation on innovation activity. I have divided 

the results into two sub-parts, whereas the first is for patent applications and the second is for 

R&D expenditure. The main question of this thesis is whether regulation has, causally, led to 

increased innovation activity. In the R&D dataset, there are multiple variables to measure R&D 

expenditure, for instance the difference between intramural and extramural expenditure. 

Moreover, there are multiple variables to measure different aspect of green R&D expenditure, 

with variables that vary over time and are measured differently in the different survey-periods. 

This might lead to inconsistency in the results. To control for this variation, I will do the analysis 

for multiple outcomes and samples obtained from propensity score matching. For patent 

activity, I differ between low-carbon patents (in accordance with the Y02 tagging scheme) and 

all patents. Equation (7.1) is the DiD regression model, and is expressed by: 

 

𝐸𝑖𝑡 =  𝛽0 + 𝛽1𝑡 + 𝐸𝑈𝐸𝑇𝑆𝑖𝛽2 +  𝛽3(𝐸𝑈𝐸𝑇𝑆𝑖 ∗ 𝛽1) +  𝜀𝑖𝑡          (7.1) 

 

The dependent variable in equation (7.1) is the outcome variable of green innovation for firm 𝑖 

in year 𝑡. 𝛽1𝑡 is the treatment year, which is 2008 in my analysis. In my analysis I keep the 

period after 2008 as the entire treatment phase. 𝐸𝑈𝐸𝑇𝑆𝑖 is a dummy variable which is equal to 

1 when a firm is regulated by EU ETS, while 𝛽2 denotes the coefficient for treatment. The 

interaction term of the treatment group dummy and the timing of treatment is denoted by 

𝛽3(𝐸𝑈𝐸𝑇𝑆𝑖 ∗ 𝛽1)  and is defined as the DiD estimator. The error term expressed by 𝜀𝑖𝑡  is 

assumed to be uncorrelated with treatment.  

I run the analysis on three different samples. The first sample, column (1) in the regression 

output, is the entire sample of firms, where the control group is all other firms that are obligated 

to report their emissions to NEA, still restricted to the industry codes similar to 05-33, except 

06, while the treatment group is the firms that are regulated by EU ETS. The second sample, 

column (2) is based on 1:1 matching with replacement on the covariates to approximate the 

selection criteria. However, I do not control for industry affiliation in this sample. In sample 3, 

column (3) I conduct the same propensity score matching as in 2, but control for industry 
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affiliation, i.e., the selection is restricted to all industries that have at least one EU ETS regulated 

and one not-regulated firm. I divide between these two samples to obtain control for the trade-

off between precision and unbiasedness which I obtain in sample 3, and sample size and 

generalizability from sample 2.  

The overall estimates of the DiD suggest that EU ETS has encouraged green intramural R&D 

spending for regulated firms, depending on the empirical assumptions. For low-carbon 

patenting, the estimations are weaker and not statistically significant, however, they are 

positive. The main drawback of the estimations is the lack of significant estimations. In panel 

data estimations, the p-value could be artificially low, and it is therefore crucial to cluster the 

standard errors. I cluster at firm-level, to control for firm-fixed effects, similar to Klemetsen, 

Rosendahl and Jakobsen (2020). Moreover, I apply regression adjustment with propensity score 

weighting in all output tables to obtain doubly robust results. This estimation is doubly robust, 

since it combines both the propensity score method and the regression method, such that only 

one of these methods need to be correctly specified (Funk et. al. 2011). All estimations are 

dependent on that the assumptions of chapter 6 must  hold. I will discuss the limitations of the 

results in chapter 9.  

7.1 Regression output, patent applications 

Table 6 reports the regression output estimated by (7.1) on low-carbon patents. Panel A 

estimates the effect based on the full sample, while panel B restricts the sample to whether the 

firm had a regular patent, i.e., these estimates for low-carbon patents are conditional on that a 

firm must have a regular patent. The latter therefore estimates the probability of having a low-

carbon patent if the firm has a regular patent. d. in row (1) and (3) denotes that the outcome 

variable is a dummy variable, while rows (2) and (4) are continuous variables that captures the 

sum of all low-carbon patents.  

The estimations on the full sample indicates an annual increase of 1-6% regulated firms that 

apply for low-carbon patents, depending on the different empirical assumptions. While for row 

(2) the estimations indicates a small positive effect, just above zero, on the annual rate of low-

carbon patent applications for regulated firms, with an annual increase of ca. 0.1 low-carbon 

patent per year from 2008-2017. However, for the restricted sample in panel B, the estimated 

effect is ca. 1 low-carbon patent per year. This result is not generalizable for firms that do not 

have patent applications. By examining the signs and the doubly robust estimations, the overall 

results suggest that there is a positive, but weak, effect of EU ETS regulation on low-carbon 

patenting for regulated firms. However, these outcomes are not statistically significant and 



39 
 

neither results have a p-value lower than 0.05. From table 3-5 we know that there are few low-

carbon patents in the samples and the effective sample size is therefore small. Moreover, in the 

matched sample in column (3) does not contain any low-carbon patent for the control group, 

which provides some unreliability to this estimate. One should therefore read the results in this 

column with caution.   

Table 6: DiD estimations for low-carbon patenting  

 Full sample Matched sample               Industry Doubly robust 

Panel A: Full 
sample   

 

Low-carbon 
patent, d. 0.011  0.022 * 0.023 * 0.064 * 

 
(0.014) 

  
(0.012) 
 

(0.01) 
 

(0.019) 
 

All low-carbon 
patents 0.067  0.09   * 0.1 * 0.16 * 
 (0.045)  (0.06) (0.06) (0.1) 
      
Panel B: firms 
with at least 
one patent 
application 
      
Low-carbon pat, 
d. 0.057 

 
 0.140 0.064 0.99 

 (0.164)  (0.11) (0.013) (0.13) 

All low-carbon 
patents 0.73 

 
* 0.89 * 0.34 1.022* 

 (0.35)  (0.40) (0.2) (0.48) 

  
 
   

 

*** p<.01", "** p<.05, "* p<.1  

Note: Difference-in-Difference estimation for low-carbon patent applications. The regression output is the interaction term 

(DiD) outlined from equation (7.1). Column (1) are results on the full sample, column (2) are results restricted to the matched 

sample from 1:1 matching on covariates profits, CO2 emissions and employees and column (3) are restricted to matching 

similar to column (2) but with matching conducted for two-digit industry codes. Panel A: regression on the full sample.   

Panel B: Restricted to firms that have had at least one patent application in the time period, 2001-2017. St. errors clustered at 

firm-level. 

To estimate the overall innovation activity in terms of patent applications, I ran a regression for 

regular patent applications as well. The regression output can be seen in table 7. d. denotes 

dummy, and row (2) and (3) are continuous variables that summarize all patents per year. We 

can see that for the dummy variable for patents, the effect is between 0-2%, meaning that there 

is a small increase in the number of regulated firms that apply for patents, however these 

estimates are not significant. There is an annual increase of 0.23-0.49 patents for regulated firms 

in the treatment period in panel A. However, in the restricted sample, the estimates are higher, 

which might not come as a surprise, since there are few firms that innovate. These estimates 

implies that for firms that already have patent applications, there is an annual increase of 2-3 
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patents in the treatment period per year for the treatment group. The dummy variable is dropped 

due to multicollinearity in panel B. As we know from tables 3-5 column (3) must be read with 

some cautions for patent applications as well, since the number of patent applications for the 

control group fell in this sample. However, all signs are positive, but weak and not with p-value 

below 0.05. 

Table 7: DiD estimations for all patent applications  

 Full sample Matched sample                        Industry   Doubly robust 
Panel A: full 

sample   
 

Patent, d. 0.0043  0.015  0.053 * 0.032 

 
(0.015) 

  
(0.014) 
 

(0.028) 
 

(0.013) 
 

All patents 0.23   0.49     0.41 0.37 
 (0.23)  (0.34) (0.33) (0.31) 
Panel B:  
restricted sample, 
to whether a firm 
has had a patent 
at least one year      
 
All patents 1.93 

 
* 3.26    * 3.35 * 3.21  

 (1.02)  (0.69) (1.08) (1.03) 

  
 
   

 

** p<.01", "* p<.05, "* p<.1  
Note: Difference-in-Difference estimation for patent applications. The regression output is the interaction term (DiD) 

outlined from equation (7.1). Column (1) are results on the full sample, column (2) are results restricted to the matched 

sample from 1:1 matching on covariates profits, CO2 emissions and employees and column (3) are restricted to matching 

similar to column (2) but with matching conducted for two-digit industry codes. Panel A: regression on the full sample.   

Panel B: Restricted to firms that have had at least one patent application in the time period, 2001-2017. St. errors clustered at 

firm-level. 

7.2 R&D spending 
To estimate the causal effect on R&D expenditure, the main variable of interests is green 

intramural R&D expenditure, both as a dummy and expressed in 1000 NOK. The green 

intramural R&D expenditure is the total share of all green variables in the R&D survey, as 

expressed in chapter 5. To obtain some nuances of this variable, I divide it into two 

subcategories: green energy and environmental research and technology. Additionally, I run a 

DiD regression on the extramural R&D expenditure and intramural R&D expenditure.  

Table 8 represents the regression output for green intramural R&D expenditure. Row (1) and 

(3) estimates the effect on the dummy variable of green intramural R&D expenditure, which is 

equal to 1 whenever a firm has green intramural R&D expenditure. Row (2) and (4) estimates 

the effect on the continuous variable of green intramural R&D expenditure in 1000 NOK. For 

both variables the effect is stronger in panel B, which is restricted to whether a firm has had 

intramural R&D expenditure. On average, the estimated effect from table 8 indicates that there 
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is an annual increase of 2,600,000-4,300,000 NOK in the full sample, while an annual increase 

of 4,600,000-13,600,000 NOK if the firm has had intramural R&D expenditure in at least one 

year. The latter is therefore an estimate that loose some generalizability for the rest of the EU 

ETS firms, since it implies intramural R&D expenditure. The dummy variable estimates the 

probability of a firm investing in green R&D expenditure, where the magnitude of the effect is 

somewhat fluctuating. The results are not statistically significant, but for dummy variable in 

panel B, the estimates suggests that there are 10% more regulated firms that have green 

intramural R&D expenditure, at an annual rate, as long as the firm has had intramural R&D 

expenditure as well.  All results suggest a positive effect, however, neither of these results have 

a p-value which is lower than 0.05. 

Table 8: all green intramural R&D expenditure 

 Unweighted Matched sample                        Industry Doubly robust 

Panel A: full 
sample   

 

Green R&D, d. 0.017  0.010 0.16 0.016  

 
(0.04) 

  
(0.05) 
 

(0.10) 
 

(0.07) 
 

Green R&D, 1000 
NOK 2661  3654  3787  

 
6715 

 (1589)  (1495) (1512) (5057) 
      
      
Panel B: restricted 
to whether the 
firm had 
intramural R&D 
expenditure      

 

      
 0.108 *  0.091 0.06 0.05 
Green R&D, d. (0.068)  (0.075) (0.016) (0.089) 
      
      
Green R&D, 1000 
NOK 4604 

 
 8249 9284 

 
13660 * 

 (7346)  (5752) (5839) (8668) 

  
 
   

 

*** p<.01", "** p<.05, "* p<.1  
Note: Difference-in-Difference estimation for green intramural R&D expenditure. The regression output is the interaction 

term (DiD) outlined from equation (7.1). Column (1) are results on the full sample, column (2) are results restricted to the 

matched sample from 1:1 matching on covariates profits, CO2 emissions and employees and column (3) are restricted to 

matching similar to column (2) but with matching conducted for two-digit industry codes. Panel A: regression on the full 

sample.  Panel B: Restricted to firms that have had at intramural R&D expenditure at least once in the time period, 2001-

2017. St. errors clustered at firm-level. 

Table 9 reports the regression output for the divided green intramural R&D expenditure, 

between green energy and climate/environmental research and technology development. The 

estimates from Panel A are obtained from the full sample, while the estimates from panel B are 

conditional on that the firm must have had intramural R&D expenditure at least once. For both 
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variables, the strongest effect is from panel B, which is consistent for the other variables as well 

in the previous tables: if a firm already innovates, EU ETS have a stronger causal effect (as 

long as the assumptions hold, and the estimates are reliable). Table 9 indicates that there has 

been an annual increase for both variables, however the effect on climate and technology is 

somewhat smaller than the variable for energy. The annual increase in R&D expenditure on 

green energy, is estimated to be between 2,000,000-7,000,000 NOK for the regulated firms, 

depending on the empirical approach. For climate and environmental technology and research, 

the annual increase is between 200,000 and 2,500,000 NOK, also depending on the empirical 

framework. However, the signs are consistent in all outcomes, also for the doubly robust. The 

estimates for green energy is higher than for climate and environmental related research and 

technology, which could be caused by an overestimation of the “green” aspect of energy, which 

was discussed in chapter 5. Therefore, this estimate should be read with some caution.  

Table 9: Green intramural R&D expenditure, energy, and climate and research 

 Full sample Matched sample                        Industry Doubly robust 

Panel A: full 
sample   

 

Energy, 1000 NOK 1966  3536 2859 3721 * 

 
(1899) 

  
(2785) 
 

(1333) 
 

(2843) 
 

Tech and research, 
1000 NOK 694  786  214  

 
589 

 (352)  (572) (218) (378) 
      
      
Panel B: restricted 
to whether the 
firm had 
intramural R&D 
expenditure      

 

      
 5136  7514* 6232 * 6828 
Energy, 1000 NOK (2377)  (5060) (5204) (5381) 
      
      
Tech and research, 
1000 NOK 2505* 

 
 2033* 1594* 

 
2304 * 

 (1670)  (1830) (2621) (1759) 

  
 
   

 

*** p<.01", "** p<.05, "* p<.1  
Note: Difference-in-Difference estimation for green energy and climate/environmental research/technology intramural R&D 

expenditure, all variables expressed in 1000 NOK. The regression output is the interaction term (DiD) outlined from equation 

(7.1). Column (1) are results on the full sample, column (2) are results restricted to the matched sample from 1:1 matching on 

covariates profits, CO2 emissions and employees and column (3) are restricted to matching similar to column (2) but with 

matching conducted for two-digit industry codes. Row 1: regression on the full sample.  Row 2: Restricted to firms that have 

had intramural R&D expenditure, 2001-2017. St. errors clustered at firm-level. 

To obtain a more nuanced understanding of the R&D activity among regulated firms, I have 

included table 10, which shows the estimation results for both the intramural and extramural 
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R&D expenditure. The signs in table 10 are negative for three out of six estimates for intramural 

R&D expenditure. As seen in tables 3-5, the intramural R&D is more similar among the control 

and the treatment firms when conducting propensity score matching, which provides some 

reliability to these estimates. However, as I have mentioned throughout this chapter: every 

estimate must be understood within its own empirical framework. Neither the intramural nor 

extramural R&D expenditure differ between categories, which makes the reading of these 

estimates rather unnuanced. However, the sample size of these variables are the largest among 

the variables on innovation activity and are the innovation activities that are the most common 

among firms in the sample. For extramural R&D expenditure, the estimates are divergent in 

signs and magnitude. All estimates in panel A suggest a negative sign for extramural R&D 

spending for the regulated firms. When restricting the sample to panel B, the estimates are 

positive for both variables (excluded one sign for intramural). These estimates implies that for 

regulated firms that have either intramural or extramural R&D expenditure, the effect is 

positive. If the firms does not have intramural or extramural R&D expenditure, the causal effect 

is negative. However, neither results are statistically significant.  

Table 11: intramural and extramural R&D expenditure 

 Unweighted Matched sample                        Industry Doubly robust 

Panel A: full 
sample   

 

Intramural -8678  -8311 3256 -5577 

 
(7123) 

  
(9672) 
 

(12262) 
 

(11632) 
 

Extramural -2667  -973  -4039  
 
-2273 

 (4391)  (5774) (5694) (10026) 
      
      
Panel B: restricted 
to whether the 
firms had R&D 
activity based on 
the dependent 
variable     

 

      
 -5574  5001 15150 7395 
Intramural (14960)  (18170) (19747) (22411) 
      
      

Extramural 3305 
 
 8581 5900 

 
7200  

 (626)  (15193) (17151) (12943) 

  
 
   

 

*** p<.01", "** p<.05, "* p<.1  
Note: Difference-in-Difference estimation for patent applications. The regression output is the interaction term (DiD) 

outlined from equation (7.1). Column (1) are results on the full sample, column (2) are results restricted to the matched 

sample from 1:1 matching on covariates profits, CO2 emissions and employees and column (3) are restricted to matching 

similar to column (2) but with matching conducted for two-digit industry codes. Panel A: regression on the full sample.   
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Panel B: Restricted to whether the firm has had either intramural/extramural expenditure (not both, but according to the 

dependent variable), 2001-2017. St. errors clustered at firm-level. 

The overall findings presented in this chapter indicates that there is an increase green intramural 

R&D spending for regulated firms, as long as the assumptions discussed in chapter 6 holds.  

Moreover, the effect on low-carbon patents is positive, however weak and insignificant. The 

magnitude of the estimate are higher when I restrict the regression to be based on whether the 

firm had conducted innovation activities, which might not come as a surprise, since the number 

of firms that conduct innovation activities are rare in my sample, and as mentioned before: there 

are some firms that innovate heavily. Therefore, these restricted estimates loose some 

generalizability outside the scope of innovative firms.  

8.0 Robustness checks  
Robustness checks are measures to provide analytical strength to one’s results, and it can be 

based on the research design and measurements (Angrist and Pischke 2009). In the robustness 

check I will conduct DiD estimation based on new samples obtained from propensity score 

matching. It is crucial to do a robustness check in this thesis, since outcomes could potentially 

be unreliable, due to the pre-period trends of the outcome variables estimated, small sample 

sizes and the lack of generalizability from some of the estimates in the main analysis. In this 

chapter, I will focus on the four main outcome variables that measure green innovation, i.e., 

low-carbon patents and green intramural R&D expenditure. In my main analysis, I did a 

propensity score matching with 1:1 and replacement and included industry affiliation. As a 

robustness test, I conduct a propensity score matching using 1-3 neighbors (similar to 

Klemetsen, Rosendahl and Jakobsen 2020). The choice of the covariates and methods of 

propensity score matching, can have crucial implications for the results, as we have seen in 

chapter 6. This robustness check is therefore conducted to provide some more evidence, with a 

different empirical approach. If the results from the robustness check deviates heavily from the 

main analysis, this suggest that either of the methods are misspecified. Similar to the main 

analysis, the propensity score matching is on the covariates profits, employees and CO2 

emissions, as well as industry affiliation, to approximate the selection criteria of EU ETS, where 

the inverse probability weights provides higher weights to the control firms that match the 

treatment firm the best, based on these covariates (Austin 2011)(Stuart 2010). I do not run a 

loop over the industries, as I did in the main analysis, but I restrict the sample to consist of two-

digit industry codes with at least one regulated and unregulated firms. There are therefore only 

15 two-digit industry codes in this sample.  
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Table 12 reports the summary statistics for the sample after matching. Since this is a robustness 

check, it is of value to compare this table with tables 1-2. Table 12 suggest that the control 

group and the treatment group are now more similar, compared to table 1, which is the original 

sample. The absolute difference between the means in covariates are now smaller.  

Table 12: summary statistics for the sample with 1:3 matching 

2001-2003 EU ETS 
 0 1 Total 

Frequency                 90                117                207 
Mean    
  Profits   1,111,043   4,083,166   2,786,505 
  Employees  275  594  455 
  Emissions, CO2   14  295  173 
Median    
  Profits    458095    635261  526563 
  Employees       175       322       240 
  Emissions, CO2    1.5135     52      16 
Maximum value    
  Profits  1.14e+07  1.86e+08  1.86e+08 
  Employees      1136     10119     10119 
  Emissions, CO2     185  10052  10052 

Note: Summary statistics for the regulated and unregulated firms, 2001-2003. Data source: Statistics Norway 

Table 13 reports the summary statistics for the innovation variables in the pre-period 2001-

2007. Compared to the full sample in table 3, the average of intramural R&D expenditure and 

green intramural R&D expenditure has increased for both firms. While the number of patents 

and low-carbon patents has been reduced for the control group, leaving only 1 low-carbon 

patent in this sample. This indicates that the patent applications vanishes when conducting the 

propensity score matching based on these covariates. However, the estimates for the R&D 

variables are now more similar between the treatment and control groups, compared to the full 

sample. I am interested in the similarities, to obtain better understanding of how the variables 

are affected by the propensity score matching.  

Table 13: summary statistics for the sample with 1:3 matching 

 EU ETS 
2001-2007 0 1 Total 

Mean    
  Intramural R&D 1000 NOK  13019  57900  30028 
  Extramural R&D 1000 NOK  3272  29310  14193 
  Green R&D 1000 NOK  1464  11082  6394 
Total 
    
  Firms with patent                 15                 24                 39 
  Firms with low-carbon patent                1                 10                 11 
  Patents                 19                147                166 
  Low-carbon patents                  1                 18                 19 
 
Firms with green R&D                 58                 61                119 

Note: Summary statistics of innovation measures for the regulated and unregulated firms, 2001-2003. Data source: Statistics 

Norway 
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In figure 14 we can see the plotted trend of average yearly green intramural R&D expenditure 

for both firms, in the weighted sample from 1:3 matching. Compared to the figure 11, the trends 

pre-treatment is moving in a more similar way, relatively speaking. Thus, the matched sample 

could be a better fit to estimate the R&D expenditure in this sample as well, as opposed to 

patent applications. However, I do not conclude with that the parallel trend assumption holds, 

I just suggest that this pre-treatment is more similar than the one for the full sample. 

 

Figure 14: Average yearly green intramural R&D expenditure, 1000 NOK 

 

Note: This figure plots the average yearly green intramural R&D expenditure in 1000 NOK on the Y-axis, over the years on 

the X-axis, for the treatment and the control group. Data source: Statistics Norway and the Norwegian Environmental 

Agency.  

In table 14 we can see the regression output for low-carbon patents. As we already know, these 

results must be examined with some caution, due to the low number of low-carbon patents in 

the control group. The estimates suggest that there is a weak, but positive, effect on the regulated 

firms. Which suggests the same trend and sign as the regression output in chapter 7. However, 

it is rather difficult to claim that these estimates are of great reliability since that the parallel 

trend assumption is most likely violated for these outcomes.  
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Table 14: low-carbon patents 

    Common support      Inverse-probability weights Doubly robust 

Low-carbon 
patent, d. 0.023  0.018  0.029 

 
(0.018) 

  
(0.020) 

 
 
 

(0.014) 
 

All low-carbon 
patents 0.101  0.103      0.104    
 (0.06)  (0.06)  (0.08) 
Low-carbon pat, 
d. 0.029 

 
 0.04  0.06 

 (0.167)  (0.161)  (0.18) 
All low-carbon 
patents 0.98 

 
 0.97  0.96 

 (0.56)  (0.57)  (0.54) 

  
 
   

 

** p<.01", "* p<.05"* p<.1  
Note: Difference-in-Difference estimation for low-patent applications. The regression output is the interaction term (DiD) 

outlined from equation (7.1). Column (1) are results restricted to the matched sample from 1:3 matching on covariates profits, 

CO2 emissions and employees, on common support and column (2) are restricted to the inverse-probability weights. Panel A: 

regression on the full sample.  Panel B: Restricted to firms that have had intramural R&D expenditure in the time period, 

2001-2017. St. errors clustered at firm-level. 

Table 15 represents the  regression output for green intramural R&D expenditure. Similar to 

the results in chapter 7, the effect is positive, and in this case, also statistically significant with 

a p-value lower than 0.05 for 3 out of 6 estimates on the continuous variable. These results 

indicates an increase of 3-9 mill. NOK annually, depending on whether the firm has 

intramural R&D expenditure or not. However, these results are not generalizable outside the 

scope of the 15 two-digit industries from the propensity score matching since the other 

industries are not represented in this regression outputs. Which is crucial to keep in mind, 

when reading the results.  

Table 15: green R&D expenditure 

    Common support      Inverse-probability weights Doubly robust 

Green R&D, d. 0.019  0.032  0.031 

 
(0.048) 

  
(0.074) 

 
 
 

(0.043) 

Green R&D, NOK 4194 **  3086  *  3892* 
 (1587)  (1710)  (1492) 

Green R&D, NOK 8252 ** 
 
 9522 **  

 
 
8402* 
(3871) 

 (3277)  (2849)   

*** p<.01", "** p<.05 "* p<.1  
Note: Difference-in-Difference estimation for green intramural R&D expenditure. The regression output is the interaction 

term (DiD) outlined from equation (7.1). Column (1) are results restricted to the matched sample from 1:3 matching on 

covariates profits, CO2 emissions and employees, on common support and column (2) are restricted to the inverse-probability 

weights. Panel A: regression on the full sample.  Panel B: Restricted to firms that have had intramural R&D expenditure in 

the time period, 2001-2017. St. errors clustered at firm-level. 
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9.0 Discussion  
The results from chapter 7 and 8 indicates a positive effect on green R&D spending for EU ETS 

regulated firms, and a weak, yet positive, effect on low-carbon patenting. The magnitude of the 

estimation is determined by the assumptions and restrictions presented from chapter 6 and 

onwards. The estimations which are restricted to firms which already have conducted 

innovation activities, are of the greatest magnitude. This result may not come as a surprise, 

since there are few firms that have innovative activities in my sample. This result loose some 

generalizability outside the scope of innovative firms since these results are conditional on that 

the firm must already innovate. Nevertheless, the estimates on the full samples are still positive, 

yet not with the same magnitude. Since innovation activity is rare for firms in my sample, the 

estimates must be read with some caution. According to the law of large numbers, the results 

would get close to the expected value of the population in large samples (Sydsæter 2010). 

However, in my dataset, the sample size of those firms who have conducted innovation activity 

is relatively small, and one should therefore interpret the estimates of this analysis with some 

caution. Needless to say, the estimation is therefore more suggestive, than definitive. In the 

following I provide some discussions to my thesis.  

An important element to discuss is the propensity score matched samples. Since I have 

conducted propensity score matching based to approximate industry affiliation, some results 

are not generalizable outside the scope of these industries. However, the most crucial aspect to 

discuss is the reduction of the total amount of low-carbon and regular patents when I conduct a 

propensity score matching. Aside to the 1:1 with replacement and 1:3 matchings, I have 

examined a various amount of different strategies, for example 1:10 with only CO2 emissions 

as the covariate to determine treatment. Even in this case, there are only 3 low-carbon patents 

remained in the weighted dataset. This suggest that the firms that have most of the low-carbon 

patents in the group of unregulated firms, are not similar to the treatment group based on the 

covariates I used to approximate the selection criteria of EU ETS, i.e., not on the high rates of 

emission level, profits and employees. However, it would be problematic to change the 

covariates just to obtain more patents in my analysis. Since I am mainly interested in the causal 

effect of EU ETS, it is crucial to  approximate the selection criteria as much as possible, to limit 

the selection bias, to obtain more reliable estimates and hence obtain something I could have 

claimed to be a causality. However, these patents will not cooperate on these terms. Therefore, 

it is a trade-off between obtaining reliability and sample size.  
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In contrast, the estimations on the R&D variables might have a higher degree of reliability, at 

least compared to the estimates on low-carbon patent application. In chapter 7 and 8 I plotted 

the trends in the outcome variable of green intramural R&D expenditure, and the trend in the 

pre-treatment phase are more parallel in the matched samples (both for 1:1 and 1:3), compared 

to the full sample. The parallel trend assumption is crucial to fulfill to obtain reliable estimates, 

as discussed. However, this is difficult to complete and verify completely. Therefore, I suggest 

that the matched samples could be better estimates on the R&D sample, while the matched 

samples are “worse” estimates for the patent sample. The problem of selection bias and 

obtaining a suitable control group, are present in this thesis, and I will not claim that I have 

overcome this problem completely. However, the problem of selection bias is common for EU 

ETS literature, since it is somewhat difficult to obtain an appropriate control group, based on 

the assumptions presented in chapter 6, when the treatment assignment is not randomized, and 

the characteristics are so different between the unregulated firms and the regulated firms. 

The main contribution of this thesis is, however, that the findings lend some support to the 

results presented by Calel (2020) and the increasing research on the causal effects of EU ETS 

on firm’s behavior. Similar to Calel, I find a positive effect on green R&D expenditure, but a 

weakly positive, yet insignificant effect on low-carbon patenting. The estimated effects in 

Calel’s paper on low-carbon patents is larger than mine, which could be caused by country-

fixed differences in terms of innovative culture or other features that determines innovation 

somehow, or the fact that there are more patents available in Calel’s dataset. Calel argues that 

it is difficult to obtain low p-values when the sample size are so small as they are. Moreover, 

since I wanted to control for firm-fixed effects, I clustered at firm-level. This increased the p-

value substantially from when I ran the regressions without clustered errors. However, it is 

rather difficult to claim that there is a causal effect on low-carbon patenting by EU ETS 

regulation, due to the violation of the parallel trend assumption, and the fact that I cannot 

measure the causal effect without an appropriate control group. There are too large differences 

between the regulated and the unregulated firms in the full sample, to claim that this effect is 

causal for low-carbon patents. However, I suggest that the estimates on green R&D are more 

reliable, since the parallel trend assumption holds to some degree in the matched sample, but 

also for the green dummy variable in the full sample.  

Another important aspect that could cause the limited amount of low-carbon patenting, is due 

to the low effective carbon price and the high amount of free allowances, which I discussed in 

chapter 2-3. Klemetsen, Rosendahl and Jakobsen (2020) also point out the low price on EUA 
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as a potential reason for why the reduction in CO2 emissions are low for Norwegian firms. I 

did not control for CO2 emissions as an outcome variable, but as discussed in chapter 2-3, one 

of the most important aims of EU ETS is to stimulate low-carbon innovation by obtaining an 

effective carbon price. For future research, I suggest estimating the effects on more recent data, 

since the carbon price has increased in the period after my data.  

10.0 Conclusion  
In this thesis my motivation was to estimate the causal effect of EU ETS regulation on green 

innovation for Norwegian manufacturing firms, from 2008 till 2017. The aim of EU ETS is to 

reduce the overall GHG emissions in Europe and to provide incentives for firms to innovate in 

low-carbon technologies. The main findings in this thesis suggest that EU ETS regulation has 

had a positive effect on green intramural R&D expenditure, and a weak, yet insignificant, effect 

on low-carbon patenting. Similar to Calel (2020) my estimates are consistent throughout studies 

for green intramural R&D expenditure. Depending on the econometric assumptions, the overall 

increase in green intramural R&D expenditure has a positive increase of 2-13 mill. NOK 

annually. However, the question regarding causality remains conflicted when it comes to the 

effects obtained in this thesis. While the results for green intramural R&D expenditure are of 

great magnitude, and the matched sample to some degree satisfies the parallel trend assumption, 

this is not the case for the results of low-carbon patents, since most of the low-carbon patents 

vanishes in the matching process.  

One of the main issues with estimating the causal effects of EU ETS, is to obtain an appropriate 

research design to overcome the selection bias caused by the treatment assignment. In my thesis, 

I contribute with some discussion of the implications of propensity score matching on EU ETS. 

However, the propensity score matching is not a perfect solution to overcome the selection bias. 

The main caveat in this thesis is that I cannot generalize the estimates outside the scope of the 

samples. However, this is a common problem in the EU ETS literature.  
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