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A B S T R A C T   

This paper develops analytic results for marginal compensated effects in discrete labor supply 
models, including a Slutsky equation. The Slutsky equation is aggregate in the sense that it es-
tablishes the relationship between the marginal compensated effects of the probability of working 
and the mean hours of work in terms of the corresponding marginal uncompensated effects. The 
Slutsky equation differs somewhat from the Slutsky equation in the standard continuous labor 
supply models. Specifically, the marginal compensated effect of an increase in the wage rate 
differs from the corresponding effect of a decrease in the wage rate. 

To illustrate some qualitative properties of the compensated marginal effects we have used an 
empirical labor supply model to compute numerical compensated (Hicksian) and uncompensated 
marginal (Marshallian) effects resulting from wage rate changes.   

1. Introduction 

In microeconomic theory the Slutsky equation plays a fundamental role in the task of calculating compensated effects (Slutsky, 
1915; Hicks, 1936; and Varian, 1992). It allows the researcher to compute marginal compensated (Hicksian) price and wage effects 
(which are unobservable) by utilizing the corresponding Marshallian marginal effects. In labor market analysis the Slutsky equation 
allows the researcher to break down total effects of changes in the budget constraint in income and substitution effects. The 
compensated labor supply elasticity is one of the key parameters in the calculation of the deadweight loss of taxation and in devising an 
optimal income tax policy (Feldstein, 1999, and Saez, 2001), and in the calculation of the marginal cost of public funds (Harberger, 
1964; Browning, 1976; Mayshar, 1990; Jacobs, 2018). In several countries, reforms have been designed to improve work incentives. 
One type of these “make-work-pay” instruments is so-called in-work benefits. Unlike the traditional social transfers that are commonly 
paid to those out of work, the key distinguishing feature of in-work benefits is that they are conditional on working. Using the Slutsky 
equation, one can evaluate the substitution and income effect from this, and similar types of reforms. 

In standard labor supply models, where the model relation that determines hours of work often is given by a closed-form 
expression, it is straightforward to calculate compensated marginal effects. In discrete labor supply models, which are based on the 
theory of discrete choice (McFadden, 2001), calculation of compensating effects is more complicated. Here, the labor supply function is 
a non-differentiable stochastic function that cannot be expressed on closed form. However, one can compute marginal compensated 
effects of aggregate labor supply, such as the marginal compensated effect of the probability of working and of mean hours of work. 

In this paper we have used results obtained by Dagsvik and Karlström (2005) to derive compensated wage elasticities for discrete 
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labor supply models and the aggregate Slutsky equations for these kinds of models. The compensated wage elasticities as well as the 
aggregate Slutsky equations are expressed by simple formulas and therefore convenient to use in practical computations of the 
compensated effect of a change in the wage rate, see Corollaries 2 and 3 below. 

Since the mid-1990s empirical labor supply analyses based on discrete choice models with random utility representations have 
become increasingly popular (Van Soest, 1995).1 See Dagsvik et al. (2014) for a survey of discrete labor supply models. The random 
utility formulation asserts that the utility representation consists of a separable deterministic and a random component. The random 
component accounts for individual tastes that may vary across latent job attributes as well as across observationally identical in-
dividuals. The random component may also capture that tastes of a given individual are random to the individual him- or herself in the 
sense that they fluctuate in an unpredictable manner (to the individual) across identical “experimental” settings. This is due to the 
inability of the agent to assess a definite value of the alternatives once and for all. A major reason for the popularity of discrete labor 
supply models is that they are much more practical to apply than the conventional approach based on marginal calculus with a 
continuum of hours available. With the discrete choice approach, it is easy to deal with non-linear and non-convex economic budget 
constraints, and to apply rather general and flexible representations of preferences. Tax functions are typically piecewise linear 
(kinked) and in many countries the marginal tax rates are not uniformly increasing with taxable income and therefore imply 
non-convex budget constraints. For governments it is important to be able to assess the impact of changes in the whole tax system on 
labor supply, income distribution, and tax revenue. This can easily be done with discrete labor supply models without simplifying the 
tax system. 

In the literature, basically two versions of discrete models of labor supply have been developed. The first version is based on a 
standard discrete choice approach (Van Soest, 1995) where labor supply is modeled similarly to the traditional textbook model. That 
is, the labor supply decision is based on maximization of utility with respect to consumption and hours of work, subject to a budget 
constraint. As in the textbook model agents are assumed to be free to choose any hours of work, subject to a finite set of feasible hours. 
As noted below, this feature is not in accordance with how labor markets are organized in most developed countries. The second 
version, which we refer to as the job choice model, was proposed by Dagsvik (1994).2 In the job choice model, labor supply behavior is 
viewed as a job choice problem, where each job is characterized by job-specific hours of work, wage rate and latent non-pecuniary 
attributes. Furthermore, the set of feasible jobs is individual-specific and latent, and the set of feasible jobs with specific workloads 
is represented by a measure of job availability. The job choice model thus differs from the standard discrete labor supply model 
described above in that the individual’s preferences depend explicitly on non-pecuniary job attributes, and in that the individual may 
be constrained in his or her choice of job and associated hours of work. This framework allows us to accommodate observed peaks in 
the hours of work distribution, which are interpreted as stemming from more jobs with full-time and part-time hours of work being 
available than jobs with other hours of work schedules. The reason for these humps at full-time and part-time hours is due to team 
work, government regulation of hours, and negotiations between trade unions and employers’ organizations. It follows that the 
standard discrete labor supply model thus becomes a special case of the job choice model. 

Instead of deriving analytic results for the Slutsky equation, one could alternatively conduct Monte Carlo (MC) simulations of 
marginal compensated effects.3 However, it is important to derive analytic results for several reasons provided they are simple to use in 
computations, as is the case for the analytic results we have derived. First, analytic expressions reveal key qualitative features of the 
marginal compensated effects. For example, it turns out that in general the marginal compensated effect resulting from a wage increase 
differs from the marginal compensated effect resulting from a wage decrease. Second, analytic results are usually more precise than 
results based on MC simulations, because they are not plagued by simulation errors. 

In Section 4 the empirical model for married women developed and estimated by Dagsvik and Strøm (2006) is applied to compute 
compensated wage elasticities at different levels of hypothetical wage rate, non-labor income, number of children in the household, 
and age of the woman. It turns out that with an increase in the wage rate the compensated and the uncompensated wage elasticities of 
mean hours of work are rather close, with the former being only slightly larger than the latter. Although theoretically the right and left 
compensated elasticities are different, as mentioned above, it turns out that the left and right compensated wage elasticities at the 
intensive margin are very close. However, at the extensive margin there are substantial differences between the right and left 
compensated wage elasticities. 

The paper proceeds as follows. In Section 2 we present several versions of discrete labor supply models. In Section 3 we derive 
analytic formulas for marginal compensated wage effects and the corresponding Slutsky equation for discrete labor supply models. 
Section 4 contains counterfactual numerical-as well as empirical compensated and uncompensated labor supply wage elasticities based 
on the empirical model in Dagsvik and Strøm (2006). 

1 This type of labor supply model is now used by the Ministries of Finance in New Zealand and Norway, by the CPB (The Netherlands), the 
Melbourne Institute (Australia), the ZEW (Germany) and the IFS (UK), and by Joint Research Centre (JRC) of the European Commission for ex-ante 
analysis (i.e. before a reform is implemented).Some recent applications are found in Blundell and Shepard (2012), Peichel and Siegloch (2012), 
Bargain et al. (2014), Mastrogiacomo et al. (2017), and Coda Moscarolo et al. (2019).  

2 Empirical applications have been conducted by Dagsvik et al. (1988), Aaberge et al. (1995), Aaberge et al. (1999), Capeau et al. (2016), Dagsvik 
and Strøm (2006), Dagsvik et al. (2011), Dagsvik and Jia (2016), and Bezeredi et al. (2019). For a recent application of a related approach where 
there are restrictions on the hours available in the market, see Beffy et al. (2019).  

3 See Bargain et al. (2014), where uncompensated wage elasticities (only) in a van Soest-type model are computed numerically by simulations of 1 
percent uniform increase in wage rates. 
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2. Versions of discrete labor supply models 

2.1. The job choice model 

In this section we provide a short review of the job choice model. As mentioned in the introduction, the job choice model developed 
by Dagsvik (1994) and further developed by Dagsvik and Strøm (2006) and Dagsvik and Jia (2016), allows the researcher to account 
for latent restrictions in the labor market. Such restrictions may explain why the distribution of hours of work typically shows peaks at 
full-time and part-time hours of work and that some workers face smaller sets (latent) of job opportunities than others. In this model 
the household derives utility from household consumption, leisure, and non-pecuniary latent job attributes. 

Let z = 1, 2, …, be an indexation of the jobs and let z = 0 represent “not working”. Let, respectively, w and y denote the agent’s wage 
rate and non-labor income and f(x, y) the function that transforms labor and non-labor income to income after tax, C. Thus, C =

f(hw, y). Let U(C, h, z) denote the agent’s utility function of disposable income, hours of work, and job type (job). 

Assumption 1. The utility function U(C, h, z) has the structure  

U(C, h, z)= u(C, h) + ε(z)

where u( ·) is a deterministic function that is strictly increasing in C and strictly decreasing in h, and {ε(z)} are job-specific random taste 
shifters that are independent of u(C, h) and i.i.d. across jobs and agents, with Gumbel c.d.f. exp( − e− x), for real x. The set of possible 
hours is finite, and the choice sets of available jobs are independent of the taste shifters. 

The random taste shifters account for unobserved individual characteristics and unobserved job-specific attributes. The motivation 
for the Gumbel c.d.f. follows from Luce’s choice axiom (Luce, 1959), which is a representation of probabilistic rationality (Luce, 1977). 

One way of understanding labor market behavior in equilibrium is as a two-sided matching market where workers (firms) are 
looking for a suitable match with a firm (worker) (Dagsvik, 2000; Menzel, 2015; Dagsvik and Jia, 2018). Dagsvik and Jia (2018) have 
demonstrated that the equilibrium choice sets of job opportunities can be treated as if they were exogenous provided that the market is 
large. 

Let D be the set of possible hours of work which we recall is assumed to be finite and let B(h) be the set of jobs with hours of work h 
that is available to the agent. The sets B(h), h ∈ D, are individual-specific and latent. Moreover, let θ be the number of jobs in B(h) and g 
(h) the proportion of jobs in B(h) with hours of work h. Thus, θg(h) is the number of jobs (opportunity measure) with hours of work h in 
the latent setB(h). The fractions {g(h)} that represent restrictions on hours, may be interpreted as stemming from institutional reg-
ulations determined by the labor organizations, the firms or the authorities. Let p(z) denote the probability that the agent shall choose 
job z and let φ(h) = φ(h;w, y) denote the probability of supplying h hours given the wage rate and non-labor income (w, y). From 
Assumption 1 and well-known results in the theory of discrete choice, it follows that the probability that the agent shall choose job z ∈

B(h) is given by 

p(z)=P(U(f (hw, y), h, z)=maxx∈Dmaxk∈B(x)U(f (xw, y), x, k)) (2.1)  

=
exp(u(f (hw, y), h))

exp(u(f (0, y), 0)) +
∑

x∈D\{0}
∑

k∈B(h)exp(u(f (xw, y), x))

=
exp(u(f (hw, y), h))

exp(u(f (0, y), 0)) +
∑

x∈D\{0}θg(x)exp(u(f (xw, y), x))
.

The last equality above follows from the fact that u(f(xw, y), x) does not depend on k. Consequently, we obtain from (2.1) that the 
Marshallian probability φ(h) that the agent shall choose to supply h hours of work is given by 

φ(h)=
∑

z∈B(h)

p(z) =
θg(h)exp(u(f (hw, y), h))

exp(u(f (0, y), 0)) +
∑

x∈D\{0}θg(x)exp(u(f (xw, y), x))
. (2.2) 

Thus, the utility maximization (with respect to hours of work) in the presence of these types of latent constraints can formally be 
viewed as an unconstrained maximization problem, namely the maximization of V(h) ≡ v(h) + ηh with respect to h, where {ηh} are 
independent and standard Gumbel distributed and where the structural part v(h)(say) is given by 

v(h)= u(f (hw, y), h) + log(θg(h)) (2.3)  

forh > 0, and v(0) = u(f(0, y), 0) when h = 0. For h = 0, φ(0) is obtained from (2.2) by replacing the numerator with exp(u(f(0, y),0)). 
Mathematically, then, the model given in (2.2) can be treated as if it were a standard discrete labor supply model with the function u 
replaced by the function v. The opportunity measure, θg(h), is not directly observable in typical data sets. However, Dagsvik and Jia 
(2016) have demonstrated that u, θ, and g(h) can still be identified. They also show that the model is identified under specific as-
sumptions, even in the case of unobserved heterogeneity of the wage equation.4 Thus, by specifying a flexible functional form of the 

4 Remember that in empirical applications it is necessary to use a wage equation to predict wage rates for those who do not work and to take into 
account that the wage rate might be correlated with the preference for work. 
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systematic part u of the utility function and of the opportunity measure, up to a set of unknown parameters, this model can be readily 
estimated using maximum likelihood methods. The parameter θ may also capture unobserved fixed costs of working. 

2.2. The standard discrete labor supply model 

The standard discrete choice labor supply model was proposed by Van Soest (1995). This model was derived independently of the 
job choice model presented above, but it can also be viewed as a special case of the job choice model, obtained by assuming that there 
are no restrictions on choices apart from the budget constraint and the set of possible hours D. This means that the standard model 
follows by letting θg(h) = 1 so that the choice probability in (2.2) reduces to 

φ(h)=
exp(u(f (hw, y), h))
∑

x∈D
exp(u(f (xw, y), x))

(2.4) 

Recall that the hypothesis underlying (2.4) is that the agents are free to choose any of the hours in the choice set D. 

2.3. The multi-sectoral job choice model 

Dagsvik and Strøm (2006) extended the job choice model to a two-sectoral version. The two-sector model, with private and public 
sectors, is of specific interest because trade unions are more influential in the public sector than in the private one, and therefore most 
of the regulations occur in the public sector and consequently hours are more restricted in the public than in the private sector. The 
model structure in the case with more than two sectors is analogous. In the multi-sectoral job choice model, preferences are repre-
sented by a utility function U(C, h, j, z) where j indexes sector. 

Assumption 2. The utility function U(C, h, j, z) has the structure  

U(C, h, j, z)= u(C, h) + εj(z)

where {εj(z)} are job-specific random taste shifters that are independent of u(C, h) and are i.i.d. across job sectors and agents, with 
Gumbel c.d.f. exp( − e− x), for real x. The set of possible hours is finite, and the choice sets of available jobs are independent of the taste 
shifters. 

In the multi-sectoral case, as in the one-sector case, Dagsvik and Strøm (2006) show that Assumption 2 implies that the probability 
of working h hours in sector j becomes 

φj

(

h
)

=
θjgj
(
h
)
exp
(
u
(
f
(
hwj, y

)
, h
))

exp
(
v
(
0, y
))

+
∑

r
∑

x∈D\{0}θrgr(x)exp(u(f (xwr, y), x)
(2.5)  

where wj is the wage rate in sector j and θjgj(h) is the sector j-specific opportunity measure, which has a similar interpretation as in the 
one-sector case. The probability of not working follows from (2.5) by replacing the numerator in (2.5) by exp(u(f(0, y), 0)). Just as in 
the one-sector case, the multi-sectoral job choice model can formally be viewed as a standard discrete labor supply model by defining 
the utility Vj(h) ≡ vj(h) + ηjh of working h hours in sector j where {ηjk} are independent and Gumbel distributed, vj(h) is 

vj(h)= u
(
f
(
hwj, y

)
, h
)
+ log

(
θjgj(h)

)

for positive h and v(0) = u(f(0, y),0). We realize that the standard discrete labor supply model and the one-sectoral job choice become 
special cases of the multi-sectoral job choice model (2.5). This is convenient for our subsequent analysis because it allows a unified 
treatment. 

The two-sectoral job choice model implies two extensive margins: to work or not work, and to work in the public or the private 
sector. It has been applied to conduct welfare analysis by Dagsvik et al. (2009). 

3. Compensated effects and slutsky equations 

3.1. The classical slutsky equation 

In the traditional textbook case, where the set of available hours of work D is a continuum, the substitution effect can be visualized 
as a move along an indifference curve. To calculate the marginal compensated effects from a change in the wage rate in the textbook 
case, one can apply the Slutsky equation. To review the classical Slutsky equation, leth(w, y)denote the Marshallian labor supply of 
hours of work, as a function of the wage rate and non-labor income (w, y), and let hc(w, u) denote the corresponding compensated 
(Hicksian) labor supply function, where u is the utility level. At optimum, hc(w,u) = h(w, e(w,u)), where e(w, u) is the expenditure 
function needed to keep utility at the level u. Using that at optimum non-wage income y is equal to e(w,u), and applying Shephard’s 
lemma, the Slutsky equation follows by differentiating through the expression above with respect to w, which yields 

∂h(w, y)
∂w

=
∂hc(w, u)

∂w
+ h(w, y)

∂h(w, y)
∂y

.

J.K. Dagsvik et al.                                                                                                                                                                                                     
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This equation allows one to compute the marginal compensated labor supply wage effects (which are unobservable) from the 
corresponding marginal Marshallian labor supply wage effects. In traditional labor supply models, where hours of work are often 
determined by a closed-form expression, it is straightforward to calculate the compensated marginal effects. As noted above, in discrete 
labor supply models the labor supply function is stochastic and cannot be expressed on closed form. Therefore, another approach is 
called for which we shall discuss below. 

3.2. Marginal compensated wage effects in discrete labor supply models and the slutsky equation 

We shall now consider marginal compensated wage effects in discrete labor supply models. Our approach, which is based on 
Dagsvik and Karlström (2005), yields analytic results for the marginal compensated labor supply wage effects and the Slutsky equation 
for such models. To the best of our knowledge, Slutsky equations for discrete labor supply models have not been obtained previously. 

Consider a setting where the wage rate changes from the initial ex-ante value w to the ex-post value w̃ (say). Let Qc(x, h) = Qc(x,
h;w, y, w̃) be the joint compensated probability of choosing x hours of work ex-ante and h hours of work ex-post, where y is the ex-ante 
non-labor income (exogenous), given that the ex-ante and ex-post utility levels are equal. Let Pc(h;w, w̃, y) be the compensated 
probability of choosing h hours of work ex-post, given that the indirect utility is kept fixed and equal to the ex-ante level. It follows that 

Pc

(

h;w, w̃, y

)

=
∑

x∈D
Qc(x, h

)

(3.1) 

We wish to compute the compensated marginal effect of the choice probability of working h hours. To this end it turns out that one 
needs to introduce left and right derivatives of the compensated probability of working h hours, defined by 

∂+φc(h)
∂w

= lim
w̃↓w

Pc(h;w, w̃, y) − φ(h;w, y)
w̃ − w

(3.2)  

and 

∂− φc(h)
∂w

= lim
w̃↑w

Pc(h;w, w̃, y) − φ(h;w, y)
w̃ − w

. (3.3) 

In (3.2) w̃ − w > 0, and it approaches zero from above, whereas in (3.3) w̃ − w < 0, and it approaches zero from below. The formula 
in (3.2) is the right marginal compensated effect of the probability of working h hours with respect to the wage rate. This formula is 
relevant for computing the compensated marginal effect of an increase in the wage rate. The formula in (3.3) is the corresponding left 
marginal compensated effect, which is relevant for computing the marginal compensated effect of a decrease in the wage rate. 
Remember that the derivative ∂φc(h)/∂w exists only if the left and right derivatives are equal. Surprisingly, this derivative does not 
always exist. Let Z be a real number and define Z+ by Z+ = max(Z,0). Furthermore, let 

γ(h)=
∂v(h)/∂w
∂v(h)/∂y

=
f ′

1(hw, y)h
f ′

2(hw, y)
(3.4)  

where we recall that f(hw, y) is the function that transforms labor and non-labor income to income after tax. 
In what follows we shall use the term discrete labor supply model, which includes the job choice model as well as the special case of 

the standard discrete labor supply model. We get the following result. 

Theorem 1. Under Assumption 1 the compensated right and left wage elasticities of the p.d.f. of hours of work in the discrete labor supply 
model are given by 

∂+ log φc(h)
∂log w

=w
∂v(h)

∂y

∑

x∈D
φ(x)(γ(h) − γ(x))+ − w

∑

x∈D

∂v(x)
∂y

φ(x)(γ(x) − γ(h))+

and 

∂− log φc(h)
∂log w

=w
∑

x∈D

∂v(x)
∂y

φ(x)(γ(h) − γ(x))+ − w
∂v(h)

∂y

∑

x∈D
φ(x)(γ(x) − γ(h))+

for h ∈ D where v(h) and γ(h) are, respectively, given in (2.3) and (3.1). Theorem 1 is a special case of Theorem 2 (Appendix A) with 
Proof given in Appendix B. In contrast to the traditional textbook case, the formulas given in Theorem 1 express marginal aggregate 
compensated effects. The corresponding marginal uncompensated (Marshallian) wage elasticity is given by 

∂log φ(h)
∂log w

=w

(
∂v(h)

∂w
−
∑

x∈D

∂v(x)
∂w

φ
(

x
))

=w

(
∂v(h)

∂y
γ

(

h

)

−
∑

x∈D

∂v(x)
∂y

γ
(

x
)

φ
(

x
))

(3.5)  

which is straightforward to verify. 
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Let h̃ denote realized hours of work, that is, h̃ is a draw from the p.d.f. φ(h). From Theorem 1 and (3.5) the next result follows. 

Corollary 1. Under Assumption 1 the compensated right and left, and uncompensated wage elasticities of the p.d.f. of hours of work in the 
discrete labor supply model can be expressed as  

∂+ log φc(h)
∂log w

=w
∂v(h)

∂y
E
(

γ
(

h
)
− γ
(

h̃
))

+
− wE

(∂v
(

h̃
)

∂y

(
γ
(

h̃
)
− γ
(

h
))

+

)

∂− log φc(h)
∂log w

=wE

(∂v
(

h̃
)

∂y

(
γ
(

h
)
− γ
(

h̃
))

+

)

− w
∂v(h)

∂y
E
(

γ
(

h̃
)
− γ
(

h
))

+

and 

∂log φ(h)
∂log w

=w
∂v(h)

∂y
γ

(

h

)

− wE

(∂v
(

h̃
)

∂y
γ

(

h̃

))

.

The formulas in Corollary 1 show that with a simulation routine that generates hours of work ̃h from φ(h) then it becomes very easy 
to compute the compensated and uncompensated wage elasticities by replacing the expected values by the corresponding simulated 
averages. 

Corollary 2 below follows readily from (3.5) and Theorem 1. 

Corollary 2. (Slutsky equation for the p. d. f. of hours of work). 
Under Assumption 1 the right Slutsky equation for the labor supply elasticities of the choice probabilities of hours with respect to 

changes in the wage rate is given by 

∂log φ(h)
∂log w

=
∂+ log φc(h)

∂log w
− w

∑

x∈D

(
∂v(x)

∂y
−

∂v(h)
∂y

)

φ

(

x

)

min(γ(h), γ(x))

(

i

)

and the left Slutsky equation is given by 

∂log φ(h)
∂log w

=
∂− log φc(h)

∂log w
− w

∑

x∈D

(
∂v(x)

∂y
−

∂v(h)
∂y

)

φ

(

x

)

max(γ(h), γ(x)).

(

ii

)

The relations given in Theorem 1 and Corollary 2 show that the right marginal compensated wage effect differs from the left 
marginal compensated wage effect. From the equation for the right marginal effect in (i) it follows when h > 0 that the income effect is 
given by 

− w
∑

x∈D

(
∂v(h)

∂y
−

∂v(x)
∂y

)

φ

(

x

)

min(γ(h), γ(x)),

which can be positive or negative, and even equal to zero. From Corollary 2 it follows that 

∂log φ(0)
∂log w

=
∂+ log φc(0)

∂log w
and

∂log φ(0)
∂log w

=
∂− log φc(0)

∂log w
− w

∑

x∈D

(
∂v(x)

∂y
−

∂v(0)
∂y

)

γ
(

x
)

φ
(

x
)

We note that at the extensive margin there is no income effect in the expression for the right marginal compensated effect. This is in 
accordance with the classical textbook case. In contrast, there is an income effect in the expression for the left marginal compensated 
effect. The reason for this is that, with a wage decrease, wage income is lost in the transition from working to not working and this loss 
therefore must be compensated. 

From Corollary 2 it also follows readily that 

∂− log φc(h)
∂log w

−
∂+ log φc(h)

∂log w
=w

∑

x∈D

⃒
⃒
⃒
⃒γ
(

h
)

− γ
(

x
)⃒
⃒
⃒
⃒

(
∂v(h)

∂y
−

∂v(x)
∂y

)

φ

(

x

)

(3.6) 

The expression in (3.6) shows that the sign of the difference between the right and left marginal compensating effects may be 
positive or negative, as well as zero. 

To gain some understanding of why the right and left marginal compensated effects are different we shall discuss the binary version 
of the standard discrete labor supply model. with the options “not working” (state 0) versus “working full time” (state 1), and where the 
wage changes from w to w̃. The agent has preferences over consumption and hours of work (C, h) with utility function U(C, h) =
U(C, h; εh) that depends on a random taste shifter εh. We assume that U(C, h; εh) is strictly increasing in C with probability 1. Let h = 1 
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represent full time workload. For simplicity we only consider the case without taxes since the argument in the general case is similar. 
Thus, the budget constraint is C = w + y where w is the wage and y is nonlabor income. Let w̃ be the ex post wage, Qc

jk denote the 
probability being in state j ex ante and in state k ex post, j, k = 0, 1, and Yjk the corresponding (ex post) expenditure. 

Suppose first that w̃ > w. Consider transitions from state 0 to state 1. In this case there are income effects, with Y determined by 
U(y,0) = U(w̃+Y01,1). However, it turns out that the income effects vanish when aggregating. To realize this, note that in this case 

Qc
01 =P(U(w+ y, 1)<U(y, 0)=U(w̃+Y01, 1)>U(Y01, 0))

implying that Y01 < y, since U(y,0) > U(Y01, 0) with probability 1. Thus, Qc
01 reduces to 

Qc
01 =P(U(w+ y, 1)<U(y, 0)=U(w̃+Y01, 1))=P(U(w+ y, 1)<U(y, 0)<U(w̃+ y, 1))

= P(U(y, 0)<U(w̃+ y, 1)) − P(U(y, 0)<U(w+ y, 1))

which we note are the difference between the ex post and ex ante probability of working. 
Furthermore, 

Qc
11 =P(U(y, 0)<U(w+ y, 1)=U(w̃+Y11, 1)>U(Y11, 0))

implying that Y11 = w − w̃ + y < y. Since U(w − w̃+y,0) < U(y,0) with probability 1, Qc
11 reduces to 

Qc
11 =P(U(y, 0)<U(w+ y, 1)).

Hence, the compensated probability of choosing state 1 ex post becomes 

Pc(1;w, w̃, y)=Qc
01 +Qc

11 =P(U(y, 0)<U(w̃+ y, 1)) (3.7)  

which equals the uncompensated probability of choosing state 1 ex post. 
Consider next the case where w̃ < w. In this case 

Qc
01 =P(U(w+ y, 1)<U(y, 0)=U(w̃+Y01, 1)>U(Y01, 0))= 0  

because it is not possible that both U(y,0) > U(Y01,0)and U(w+y,1) < U(w̃+Y01,1). Furthermore, Y11 = w − w̃ + y so that 

Qc
11 =P(U(y, 0)<U(w+ y, 1)=U(w̃+Y11, 1)>U(Y11, 0))

= P(U(w+ y, 1)>U(w − w̃+ y, 0)).

The last result is intuitive because when the worker does not change state she or he needs to be compensated after a wage decrease. 
Hence 

Pc(1;w, w̃, y)=Qc
01 + Qc

11 = Qc
11 = P(U(w+ y, 1)>U(w − w̃+ y, 0)). (3.8) 

We note that there is a fundamental difference between (3.7) and (3.8). In (3.7) the utility of working depends on consumption w̃+

y and the utility of not working depends on consumption y. In contrast, in (3.8) the utility of working depends on consumption w+ y 
whereas the utility of not working depends on consumption w − w̃ + y. Accordingly, the left marginal compensated effect differs from 
the right marginal compensated effect. 

Further intuition might be obtained by considering the special case where 

U(C, 1)= v1(C) + ε1 and U(C, 0) = v0(C) + ε0  

and where F is the c. d. f. of ε0 − εh. Then if w̃ > w we get from (3.7) that 

Pc(1;w, w̃, y)=F(v1(w̃, y) − v0(y)) (3.9)  

and if w̃ < w we get from (3.8) that 

Pc(1;w, w̃, y)=F(v1(w, y) − v0(yh)). (3.10) 

From (3.9) we get that the corresponding right marginal compensated wage effect is 

∂+φc(h)
∂w

=F′

(v1(w, y) − v0(y))
∂v1(w, y)

∂w  

whereas from (3.10) we get that the left marginal compensated wage effect is 

∂− φc(h)
∂w

= − F
′

(v1(w, y) − v0(y))
∂v0(y)

∂y
·
∂yh

∂w  
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= F′

(v1(w, y) − v0(0; y))
∂v0(y)

∂y
·
∂v1(w, y)

∂w

/
∂v1(w, y)

∂y
.

It follows from the expressions above that 

∂+φc(1)/∂w
∂− φc(1)/∂w

=
∂v1(w, y)/∂y

∂v0(y)/∂y  

which in general differs from 1. 
From Corollary 2 the Slutsky equations for the mean hours of work follow readily and are given in the next Corollary. 

Corollary 3. (Slutsky equations for the mean hours of work) 

Let ̃h and ̃h
′

be independent realizations of hours of work generated by φ(h). Then, under Assumption 1, the right and left Slutsky equations 
for the mean hours of work are given by 

∂Eh̃
∂w

=
∂+Eh̃

c

∂w
− Cov

(

h̃, −
∂v
(

h̃
)

∂y
min
(

γ
(

h̃
)
, γ
(

h̃
′))
)

+ Cov

(

h̃
′

, −
∂v
(

h̃
)

∂y
min
(

γ
(

h̃
)
, γ
(

h̃
′))
)

and 

∂Eh̃
∂w

=
∂− Eh̃

c

∂w
− Cov

(

h̃, −
∂v
(

h̃
)

∂y
max

(
γ
(

h̃
)
, γ
(

h̃
′))
)

+ Cov

(

h̃
′

, −
∂v
(

h̃
)

∂y
max

(
γ
(

h̃
)
, γ
(

h̃
′))
)

.

From Corollary 3 the next result follows. 

Corollary 4. Under Assumption 1 we have that  

∂Eh̃
∂w

≤
∂+Eh̃

c

∂w
and

∂Eh̃
∂w

≤
∂− Eh̃

c

∂w
.

The Proof of the inequalities in Corollary 4 runs as follows. Note first that − ∂v(h)/∂y and γ(h) are increasing functions of h and 

second that the correlation between ̃h and − min(γ(h̃), γ(h̃
′

))∂v(h̃)/∂y is higher than the correlation between ̃h
′

and − ∂v(h̃)/ ∂ymin(γ(h̃),

γ(h̃
′

)) because h̃ and h̃
′

are independent. Hence, the income effect 

− Cov

(

h̃, −
∂v
(

h̃
)

∂y
min
(

γ
(

h̃
)
, γ
(

h̃
′))
)

+ Cov

(

h̃
′

, −
∂v
(

h̃
)

∂y
min
(

γ
(

h̃
)
, γ
(

h̃
′))
)

< 0  

from which the inequalities in Corollary 4 follow. This property is analogous to the standard textbook case given that leisure is a 
normal good. We would expect the difference between the two covariances in most cases to be small and so we would expect the 
income effect above to be small. The implication is that we would expect the uncompensated and the compensated mean hours wage 
elasticities to be rather similar. 

Because of non-linearity and unobserved heterogeneity at the micro level, the compensated and uncompensated labor supply 
elasticities cannot be expressed in a simple way by structural parameters. Also, it can be shown that even when the model is a 
continuous multinomial logit model, as in Dagsvik (1994), the difference between the right and left marginal wage effects does not 
disappear. 

Remember that although the formulas above are based on a multinomial logit formulation they can easily be extended to the mixed 
logit case by allowing some parameters to be random. 

4. Compensated and uncompensated labor supply wage elasticities: counterfactuals and empirical results 

To illustrate how the compensated and uncompensated labor supply wage elasticities differ across individual characteristics, wage, 
and non-labor income levels, we have calculated labor supply wage and income elasticities at different hypothetical levels of wage 
rates and non-labor incomes, given the estimates of the empirical two-sector supply model for married women (Dagsvik and Strøm, 
2006). We also report the mean values of compensated and uncompensated elasticities for a representative sample used in the esti-
mation of the model. Details about data, tax functions, and estimates of the model are given in Appendix C in the online supplementary 
section of this paper. All values below refer to 1994–1995. Since then the nominal wage level has increased substantially. Wages in the 
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private sector were the highest ones.5 

The deterministic part of the utility function used in the estimation is given by 

u
(

f
(

hwj, y
))

, h,X
)

=

(
10− 4

(
f
(
hwj, y

)
− C0

))α1
− 1

α1

[

α2 + α9
(1 − h/3640)α3 − 1

α3

]

+Xb
(1 − h/3640)α3 − 1

α3

(4.1)  

where C0 is the subsistence consumption level and X is a vector of observed characteristics, consisting of the number of children 0–6, 
7–17, log age, and log age squared. The term 1 − h/3460 represents normalized leisure after deducting time for rest and sleep. Non- 
labor income, y, is the sum of capital income after tax, child allowances, and the after-tax income of the husband. The parameter 
estimates (see Dagsvik and Strøm, 2006) imply that the utility function is quasi-concave, with a significant negative interaction term 
for leisure and consumption. 

4.1. Overall wage change and aggregate elasticities using sample data 

Here we report mean wage elasticities based on the same sample that was used to estimate the model. In Table 1 we report the right 
compensated and uncompensated mean elasticities of the mean hours of work and the probability of working with respect to an overall 
increase in the wage rates, as well as the corresponding mean conditional elasticities, given participation. Recall that individuals can 
choose to work in either the public or the private sector. The sector-specific changes are, however, not displayed here. 

According to Theorem 2 (Appendix A), the uncompensated and the right compensated elasticities of working are equal. From 
Table 1 we note that the right compensated elasticity of mean total hours of an overall wage change, conditional on working (and 
hence also in the unconditional case), exceeds the corresponding uncompensated elasticity. However, the differences between the 
marginal compensated and uncompensated wage elasticities of the mean hours of work are not large. This means that the income effect 
is relatively small. 

Attanasio et al. (2018) have calculated compensated labor supply wage elasticities based on US micro data (1980–2012). Although 
their model (a standard textbook labor supply model), sample, and aggregation procedure are different from ours, they obtain that the 
median in the distribution of the compensated wage elasticity, conditional on working, is equal to 0.54. In our case the aggregate 
compensated elasticity of mean hours of work, conditional on working, is equal to 0.40. However, the corresponding unconditional 
elasticity, accounting for the three extensive margins (working at all, working in the public sector, and working in the private sector) is 
0.71. Bargain et al. (2014), who estimate a standard discrete labor supply model based on data from around year 2000 for 17 European 
countries, report only uncompensated labor supply own wage elasticities, which are not very different from the corresponding 
aggregate uncompensated elasticities we have obtained. For a large group of countries their estimates of the mean uncompensated own 
wage elasticities of hours of work are in the range of 0.2–0.4. They also report extremely small income elasticities, which is also what 
we get. 

Table 1 
Right compensated and uncompensated mean wage elasticities with respect to an overall wage increase for the sample used in estimating the model. 
Married women, Statistics Norway, 1994.  

Elasticities Probability of working Conditional hours, given working Unconditional hours 

Uncompensated 0.315 0.372 0.697 
Compensated 0.315 0.401 0.716  

Table 2 
Right compensated and uncompensated wage elasticities with respect to an overall wage increase. Married woman aged 30, no children, wage rate 
NOK 70.  

Non-labor income Direct elasticity Probability of working Conditional mean hours Unconditional mean hours   

All Pub. Priv. All Pub. Priv. All Pub. Priv. 

70,000 Uncompensated 0.010 0.047 − 0.140 0.255 0.236 0.330 0.265 0.283 0.190  
Compensated 0.010 0.054 − 0.170 0.307 0.284 0.397 0.317 0.339 0.226 

100,000 Uncompensated 0.044 0.090 − 0.139 0.325 0.303 0.407 0.368 0.393 0.269  
Compensated 0.044 0.096 − 0.162 0.362 0.337 0.454 0.406 0.433 0.292 

200,000 Uncompensated 0.164 0.219 − 0.042 0.419 0.396 0.498 0.583 0.615 0.456  
Compensated 0.164 0.221 − 0.050 0.431 0.408 0.512 0.595 0.629 0.462  

5 The average nominal wage per hour for married women in 1994/1995 was around NOK 90–100, while the nominal average in December 2019 
was around NOK 290. 
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4.2. An overall wage increase: labor supply elasticities for a specific household 

For simplicity, we consider the case where the wage rates for each sector are equal for all women. We report the marginal un-
compensated and compensated wage elasticities of working at all, working in the public and the private sectors, conditional mean 
hours given participation, conditional mean hours given that the individual works in the respective sectors, and the respective un-
conditional mean hours (Corollaries 5 and 7 in Appendix A). With an overall wage change there are income effects related to the choice 
of working in the respective sectors, in contrast to the case with sector-specific wage changes (reported below). 

In Table 2 we report elasticities for a married woman with wage rate NOK 70 and with three levels of non-labor income. This wage 
rate is around 20–30 percent below the average wage rate in 1994/1995. 

All the compensated elasticities of mean hours of work conditional on working, as well as the mean unconditional hours, exceed the 
corresponding uncompensated ones, implying non-zero income effects. But these income effects are small, and they decline with the 
level of non-labor income. Moreover, the higher the non-labor income is, the lower is the probability of participation and the higher the 
wage elasticities. See Appendix E in the online supplementary section for more results. 

4.3. Selected household types 

We have computed wage and income elasticities for selected groups of married women who differ with respect to levels of wage 
rates (low; medium; and high), non-labor income (low, high, and high), number of children (none or two), and age (30 and 40). In total 
we have 36 different cases, displayed in Table 3 below. Of special interest are the groups with low wage rates, namely groups 1–3 (age 
30, no children), 10–12 (age 30, two children 0–6), 19–21 (age 40, no children), and 28–30 (age 40, two children 7–17). The three 
cases in each of these groups have an increasing level of non-labor income. The probabilities of participation at all and participation in 
the two sectors, and the mean hours of work for these 36 cases are given in Appendix D in the online supplementary section. Numerical 

Table 3 
The selected household types.  

Type no. Age Wage rate No children Non-labor income  

1–3 30 70 0 70,000 100,000 200,000 
4–6 30 200 0 70,000 100,000 200,000 
7–9 30 300 0 70,000 100,000 200,000 
10–12 30 70 2 70,000 100,000 200,000 
13–15 30 200 2 70,000 100,000 200,000 
16–18 30 300 2 70,000 100,000 200,000 
19–21 40 70 0 70,000 100,000 200,000 
22–24 40 200 0 70,000 100,000 200,000 
25–27 40 300 0 70,000 100,000 200,000 
28–30 40 70 2 70,000 100,000 200,000 
31–33 40 200 2 70,000 100,000 200,000 
34–36 40 300 2 70,000 100,000 200,000  

Fig. 1. Right compensated and uncompensated wage elasticities of total unconditional expected hours for an overall wage increase.  
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values for all elasticities and for all cases shown below are given in Appendices E–J in the online supplementary section. 

4.4. Wage elasticities of mean hours of work within each household group with respect to an overall wage change 

In Fig. 1 we report the elasticities of mean hours (unconditional) of work for each of the 36 different household types. These wage 
elasticities are relatively small, with 12 exceptions. These 12 groups have low wage rates. Among them the wage elasticities are higher 
if they have children and/or if the non-labor income is high. These results clearly demonstrate that heterogeneity matters. 

Of special interest here is that the compensated wage elasticities of mean hours exceed the corresponding uncompensated elas-
ticities. Thus, there are income effects, but, as seen from Fig. 1, they are quite small in all cases. 

4.5. Sector-specific wage increases and elasticities for the 36 selected households 

In Table 4 we report uncompensated and right marginal compensated wage elasticities, due to an increase in the wage rate of the 
public sector only. In accordance with the theoretical results in Section 3, the compensated and uncompensated elasticities related to 
working at all and working in a specific sector are equal. This is true for the direct as well as the cross-elasticities. The compensated 
direct elasticities of mean hours are always higher than the corresponding uncompensated elasticities. Again, the income effects are 
small. 

The uncompensated cross-wage elasticity of mean conditional hours of work, conditional on working in a specific sector, is equal to 
zero. This follows from the fact that when j ∕= k we have 

E
(

h̃k

⃒
⃒
⃒
⃒h̃k > 0

)

=

∑
xxφk(x)∑
xφk(x)

=

∑
xx exp(vk(x))
∑

xexp(vk(x))

Table 4 
Right compensated and uncompensated wage elasticities. Married woman aged 30, no children, hourly wage NOK 70. Increase in the wage rate in the 
public sector.  

Income  Probability of working  Conditional hours Unconditional hours    

Public Private  Public Private  Public Private   

Total (direct) (cross) Total (direct) (cross) Total (direct) (cross) 

70,000 Uncompensated 0.008 1.442 − 5.753 0.221 0.236 0.000 0.229 1.679 − 5.753  
Compensated 0.008 1.442 − 5.753 0.252 0.275 0.000 0.260 1.717 − 5.753 

100,000 Uncompensated 0.035 1.341 − 5.094 0.281 0.303 0.000 0.316 1.643 − 5.094  
Compensated 0.035 1.341 − 5.094 0.303 0.330 0.000 0.338 1.671 − 5.094 

200,000 Uncompensated 0.131 1.184 − 3.839 0.359 0.396 0.000 0.490 1.580 − 3.839  
Compensated 0.131 1.184 − 3.839 0.367 0.405 0.000 0.498 1.589 − 3.839  

Fig. 2. Total unconditional expected hours elasticities related to a wage increase in the public sector.  
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which does not depend on wj.

In Fig. 2 we report the wage elasticities of the unconditional mean of total hours with respect to an increase in the public wage rate 
for the selected 36 household types. “Total” means that the cross-effects are accounted for. The compensated elasticities exceed the 
uncompensated elasticities, but the difference is almost negligible. The elasticities are small, around 0.2, except for the women with 
low wages. 

4.6. Sector-specific wage increases versus wage decreases and elasticities 

In Appendix H (wage decrease in the public sector) and Appendix I in the online supplementary section (wage decrease in the 
private sector) we report left wage elasticities for all 36 household types. Fig. 3 yields the total wage elasticities of the probability of 
working (extensive margin). “Total” means that cross-effects are accounted for. Fig. 4 yields the elasticities of the conditional mean 
hours (intensive margin) and, finally, Fig. 5 yields the elasticities of the unconditional mean hours of work. 

Note that at the extensive margin the left total wage elasticities are much higher than the right total wage elasticities. At the 
intensive margin the differences between left and right total wage elasticities are almost negligible for wage changes in the public 
sector and somewhat larger, but not much, for wage changes in the private sector. 

5. Conclusions 

By using the results of Dagsvik and Karlström (2005) we have derived analytic formulas and Slutsky equations for the compensated 

Fig. 3. Compensated elasticities of the probability of working.  
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labor supply wage elasticities in discrete labor supply models. The Slutsky equation enables researchers to calculate compensated wage 
elasticities from the corresponding uncompensated wage elasticities. The Slutsky equation we have obtained differs in important ways 
from the traditional one in that the compensated labor supply elasticities with respect to a wage increase differs from the compensated 
wage elasticities with respect to a wage decrease. 

In the selected numerical counterfactual simulations, it turns out that the differences between the right and left compensated wage 
elasticities are small at the intensive margin, but rather sizeable at the extensive margin. Furthermore, the compensated labor supply 
elasticities are larger than the uncompensated ones, but the difference is small, indicating minor income effects. The compensated and 
uncompensated labor supply wage elasticities vary substantially with wage rate, non-labor income, age, and number of children in two 
age groups. The wage elasticities are greatest for those with the lowest wages, those with the highest non-labor income, and those with 
many children. These results indicate that the distortionary effect of taxation is stronger for individuals with low wage rates than for 
those with high wage rates. 
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Appendix A 

Marginal compensated effects for the multi-sectoral job choice model 

Theorem 2. Under Assumption 2 we have  

∂+ log φc
j (h)

∂log wj
=

wj∂vj(h)
∂y

∑

x∈D\{0}

φj(x)
(
γj(h) − γj(x)

)

+

− wj

∑

x∈D\{0}

φj(x)
∂vj(x)

∂y
(
γj(x) − γj(h)

)

+
+ wj

(
1 − φj

) ∂vj(h)
∂y

γj(h),

∂− log φc
j (h)

∂log wj
=wj
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φj(x)
∂vj(x)
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(
γj(h) − γj(x)

)

+
− wj

∂vj(h)
∂y

∑

x∈D\{0}

φj(x)
(
γj(x) − γj(h)

)

+

+wjγj(h)
∑

r∕=j,0
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φr(x) + wjγj(h)φ(0)
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j

(
h
)

∂log wk
=

∂log φj
(
h
)

∂log wk
+ wj

∑

x∈D\{0}

(
∂vk(x)

∂y
−

∂vj
(
h
)

∂y

)

φk

(

x
)

γk

(

x
)

fork ∕= j,

∂+ log φc(0)
∂log wj

=
∂log φ(0)
∂log wj  

and 

∂− log φc(0)
∂log wj

=
∂log φ(0)
∂log wj

+ wj

∑

x∈D\{0}

(∂vj
(
x
)

∂y
−

∂v(0)
∂y

)

γj

(

x
)

φj

(

x
)

where vj(h) = uj(f(wjh, y), h) + log(θjgj(h)) and 

γj(h)=
∂vj(h)

/
∂wj

∂vj(h)
/

∂y
=

f ′

1

(
wjh, y

)
h

f ′

2
(
wjh, y

) .

The Proof of Theorem 2 is given in Appendix B. 

Corollary 5. Under Assumption 2 it follows that 

∂+ log φc
j

(
h
)

∂log wj
−

∂log φj
(
h
)

∂log wj
=wj

∑

x∈D\{0}

φj

(

x
)(∂vj

(
x
)

∂y
−

∂vj
(
h
)

∂y

)

min

(

γj

(

h

)

, γj

(

x

))

and 

∂− log φc
j

(
h
)

∂log wj
−

∂log φj
(
h
)

∂log wj
=wj

∑

x∈D\{0}

φj

(

x
)(∂vj

(
x
)

∂y
−

∂vj
(
h
)

∂y

)

max

(

γj

(

h

)

, γj

(

x

))

+wj
∂vj(h)

∂y
γj(h)

(
φj − 1

)
+ wjγj(h)

∑

r∕=j,0

∑

x∈D\{0}

∂vr(x)
∂y

φr(x) + wjγj(h)
∂v(0)

∂y
φ(0).

The Proof of Corollary 5 is given in Appendix B 
First, we observe (direct effects) that the marginal effect of an increase in the wage wj on the probability of working h hours in sector j is 

similar to the marginal effect in the case of single sector model, it has a compensated term and an income effect term. As above the latter will 
vanish in the case of a linear utility function. The Slutsky equation in the case of a decrease in the wage rate is somewhat more complicated than 
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in the one sector case. 
Second, the Slutsky equation related to an increase in wage rate wk on the probability of working h hours in sector j, j ∕= k, consists only of a 

compensated term, there is no income effect. Again, this is in accordance with the expectation based on the classical textbook case. But there is 
an income effect in the cross effect due to a wage decrease; again there is a wage income loss to be compensated. 

Third, the marginal effect of an increase in the wage in sector j on the probability of working, consist only of a compensated term, there is no 
income effect. This is in accordance with the classical textbook case. However, as in the case of the single sector model, in the case of a wage 
decrease there is an income effect. From Theorem 2 we get 

∂− log φc
j

(
h
)

∂log wj
−

∂+φc
j

(
h
)

∂log wj
= − wj

(

1 − φj

)

γj

(

h

)
∂vj
(
h
)

∂y
+wjγj

(

h

)
∑

r∕=j

∑

x∈D\{0}

∂vr(x)
∂y

φr

(

x
)

+wjφ

(

0

)
∂v(0)

∂y 

+wj

∑

r∕=j

∑

x∈D\{0}

φr

(

x
)(∂vj

(
x
)

∂y
−

∂vj
(
h
)

∂y

)⃒⃒
⃒
⃒
⃒
γj

(

h

)

− γj

(

x

)⃒
⃒
⃒
⃒
⃒
. (A.1) 

From (A.1) we note that the sign of the difference between the right and left marginal compensating effects might happen to be both positive 
and negative. 

Above, we have seen that the left and right marginal effects differ substantially in the sense that the algebraic expressions are quite different. 

Corollary 6. Let h̃jand h̃
′

j be independent realizations of the p.d.f. φj(h). Then under Assumption 2 we have that  

∂+Eh̃
c
j

∂wj
−

∂Eh̃j

∂wj
=Cov

⎛

⎝h̃j, −

∂vj

(

h̃j

)

∂y
min
(

γj

(

h̃j

)

, γj

(

h̃
′

j

))
⎞

⎠ − Cov

⎛

⎝h̃
′

j, −

∂vj

(

h̃j

)

∂y
min
(

γj

(

h̃j

)

, γj

(

h̃
′

j

))
⎞

⎠,

∂− Eh̃
c
j

∂wj
−

∂Eh̃j

∂wj
=Cov

⎛

⎝h̃j, −

∂vj

(

h̃j

)

∂y
max

(

γj

(

h̃j

)

, γj

(

h̃
′

j

))
⎞

⎠ − Cov

⎛

⎝h̃
′

j, −

∂vj

(

h̃j

)

∂y
max

(

γj

(

h̃j

)

, γj

(

h̃
′

j

))
⎞

⎠

+
∑

r∕=j

E

⎛

⎝
∂vr

(

h̃r

)

∂y
h̃jγj

⎛

⎝h̃j

⎞

⎠

⎞

⎠+

⎛

⎝φj − 1

⎞

⎠E

⎛

⎝
∂vj

(

h̃j

)

∂y
h̃jγj

⎛

⎝h̃j

⎞

⎠

⎞

⎠+
∂v(0)

∂y
φ

⎛

⎝0

⎞

⎠E

⎛

⎝h̃jγj

⎛

⎝h̃j

⎞

⎠

⎞

⎠

and 

∂− Eh̃
c
j

∂wk
−

∂Eh̃j

∂wk
=Eh̃jE

⎛

⎝
γk

(

h̃k

)

∂vk

(

h̃k

)

∂y

⎞

⎠ − Eγk

⎛

⎝h̃k

⎞

⎠E

⎛

⎝
h̃j∂vj

(

h̃j

)

∂y

⎞

⎠.

The Proof of Corollary 6 is given in Appendix B. 

Corollary 7. Under Assumption 2 we have that  

∂+Eh̃
c
j

∂wj
>

∂Eh̃j

∂wj
.

The Proof of Corollary 7 is given in Appendix B. In contrast to the single sector case we have not been able to prove that in general 

∂− Eh̃
c
j

∂wj
>

∂Eh̃j

∂wj
.

However, this inequality holds for our empirical model, cf. Section 4.2. 
The formulas above concern the case where only sector specific wages are altered. It is, however, also of interest to consider the case with an 

overall wage increase. Specifically, assume now that wj = ajw where w is a wage component that is common to both sectors. 

Corollary 8. Under Assumption 2 with wj = ajw where w is a common wage component, we have for h > 0, that  

∂+ log φc
j (h)

∂log w
=w

∂vj(h)
∂y

∑

k

∑

x∈D\{0}

φk(x)
(
ajγj(h) − akγk(x)

)

+

− w
∑

k

∑

x∈D\{0}

φk(x)
∂vk(x)

∂y
(
akγk(x) − ajγj(h)

)

+
+ φj(h)φ(0)ajγj(h)

∂vj(h)
∂y  

and 
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∂− log φc
j (h)

∂log w
=w

∑

k

∑

x∈D\{0}

∂vk(x)
∂y

φk(x)
(
ajγj(h) − akγk(x)

)

+

− w
∂vj(h)

∂y
∑

k

∑

x∈D\{0}

φk(x)
(
akγk(x) − ajγj(h)

)

+
+ wφ(0)ajγj(h)

∂v(0)
∂y

.

The Proof of Corollary 8 is similar to the Proof of Theorem 2. 

Appendix B 

Proofs 

Consider a setting (labor market) with two levels of alternatives, sector and hours of work. Let wj be the wage rate of sector j and y the 
income, w = (w1,w2, ...), and let w̃ be the corresponding vector of ex post wage rates. Let 

Uj(h,wj, y) = vj(h;wj, y) + ηjh and U(0,y) = v(0,y)+ η0 

be the utilities of alternative (j, h) and the non-working alternative where the error terms {ηjh, η0} are iid with c.d.f. exp( − e− x). Let 
Qc(k, x; j, h) be the compensated probability of switching from hours of work x in sector k to hours of work h in sector j after a policy intervention 
consisting of changing w to w̃, given that the ex ante and ex post utility levels are equal. The following Lemma follows from a straight forward 
adaptation of the result in Theorem 4 in Dagsvik and Karlström (2005). 

Lemma B1. Under the assumptions of the multisectoral discrete labor supply model we have that  

Qc(k, x; j, h)=
∫ykx

yjh

exp
(

vk(x;wk, y) + vj

(

h; w̃j, z
))

∂vj

(

h; w̃j, z
)/

∂z

M(z)2 dz (B.1)  

and 

Qc(j, h; j, h)=
exp
(
vj
(
h;wj, y

))

M
(
yjh
) (B.2)  

for j, k >0, x, h>0, where yjh is determined by 

vj
(
h;wj, y

)
= vj

(

h; w̃j, yjh

)

(B.3)  

and 

M

(

z

)

=
∑

r>0

∑

x∈D\{0}

exp(max(vr

(

x;wr, y

)

, vr

(

x; w̃r , z

)))

+ exp

(

max

(

v

(

0; , y

)

, v

(

0; , z

)))

(B.4) 

The formulas for Qc(0; j, h),Qc(k, x;0) and Qc(0;0) are obvious modifications of the formulas in (B.1) and (B.2). 

Lemma B2. Let Δwj = w̃j − wj. We have that  
(

yjx

(

w̃j

)

− yjh

(

w̃j

))

+

=
(
γj(h) − γj(x)

)

+
Δwj + o

(
Δwj
)

when Δwj > 0, and 
(

yjx

(

w̃j

)

− yjh

(

w̃j

))

+

= −
(
γj(x) − γj(h)

)

+
Δwj + o

(
Δwj
)

when Δwj < 0, where 

γj(x)= − y
′

jx

(
wj
)
=: − y

′

jx

(
wj
)
=

∂vj(h)
/

∂wj

∂vj(h)
/

∂y
=

xf ′

1

(
wjx, y

)

f ′

2
(
wjx.y

) .

Proof of Lemma B2 

Assume first that Δwj > 0. By the mean value Theorem we get that 
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(

yjx

(

w̃j

)

− yjh

(

w̃j

))

+

=
((

y′

jx

(
wj

)
− y′

jh

(
wj

))
Δwj + o

(
Δwj

))

+
=
(((

y′

jx

(
wj

)
− y′

jh

(
wj

))
Δwj

)

+
+ o
(

Δwj

)

=
(

y′

jx

(
wj
)
− y′

jh

(
wj
))

+
Δwj + o

(
Δwj
)
=
(
γj(h) − γj(x)

)

+
Δwj + o

(
Δwj
)
.

Assume next that Δwj < 0. Then it follows that 
(

yjx

(

w̃j

)

− yjh

(

w̃j

))

+

=
((

y
′

jx

(
wj
)
− y

′

jh

(
wj
))

Δwj + o
(
Δwj
))

+
=
((

y
′

jh

(
wj
)
− y

′

jx

(
wj
))(

− Δwj
))

+
+ o
(
Δwj
)

=
(

y′

jh

(
wj
)
− y′

jx

(
wj
))

+

(
− Δwj

)
+ o
(
Δwj
)
= −

(
γj(x) − γj(h)

)

+
Δwj + o

(
Δwj
)
.

Moreover, from (B.3) it follows by implicit differentiation that 

0=
∂vj
(
x;wj, yjx

(
wj
))

∂wj
+

∂vj
(
x;wj, yjx

(
wj
))

∂y
· y′

jx

(
wj
)

which gives 

y
′

jx

(
wj
)
= −

∂vj(x)
/

∂wj

∂vj(x)
/

∂y
= −

f ′

1

(
wjx, y

)
x

f ′

2
(
wjx, y

) = − γj(x).

Q. E. D. 

Proof of Theorem 2 

We consider first the case of a wage increase in sector j. Let w̃j = wj + Δwj where Δwj is small and positive. Recall that 

vj
(
h;wj, y

)
= u
(
f
(
hwj, y

)
, h
)
+ log

(
θjgj(h)

)
and v(0; y) = u(f (0, y), 0).

Note that in this case ykx(wk) = yfor k ∕= j and yjx(w̃j) < y. It follows from (B.1) and the mean value Theorem for integrals that when k ∕= j,

Qc(k, x; j, h)=

(
exp
(
vj(x) + vj(h)

)
∂vj(h)

/
∂y + O

(
Δwj
))
(

y − yjh

(

w̃j

))

M(y)2

= − φj(h)φk(x) ·
∂vj(h)y

′

jh

(
wj
)

∂y
·Δwj + o

(
Δwj
)
.

(B.5) 

The last part of Lemma B2 yields furthermore that (B.5) can be expressed as 

Qc(k, x; j, h)=φj(h)φk(x)γj(h)
∂vj(h)

∂y
Δwj + o

(
Δwj
)
. (B.6) 

Similarly, we also get that 

Qc(0; j, h)=φj(h)φ(0)γj(h)
∂vj(h)

∂y
Δwj + o

(
Δwj
)
. (B.7) 

Furthermore, by using the mean value Theorem we get from (B.1) and Lemma B2 that 

Qc(j, x; j, h) = φj(h)φj(x)
(
∂vj(h)

/
∂y
)
(

yjx

(

w̃j

)

− yjh

(

w̃j

))

+

+ o
(
Δwj
)
= φj(x)φj(h)

(
∂vj(h)

/
∂y
)(

γj(h) − γj(x)
)

+
Δwj + o

(
Δwj
)
.

(B.8) 

Let M̃(z) be the modification of M(z) that consists in replacing wj by w̃j. By using the mean value Theorem and (B.2) we get that  

Qc

(

j, h; j, h

)

− φj

(

h

)

=
exp
(
vj
(
h;wj, y

))

M̃
(

yjh

) −
exp
(
vj
(
h;wj, y

))

M(y)
=

φj

(
h
)(

M
(

y
)
− M̃

(
yjh

))

M̃
(

yjh

)

= − φj

⎛

⎝h

⎞

⎠ ·

∑
x∈D\{0}

(

exp
(

vj

(

x; w̃j, yjh

))

− exp
(

vj

(

x;wj, y
)))

+

M̃
(

yjh

)
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= − φj

(

h

)
∑

x∈D
φj

(

x
)(∂vj

(
x
)

∂wj
+

∂vj
(
x
)

∂y
y′

jh

(

wj

))

+

Δwj + o

(

Δwj

)

= − φj

(

h

)
∑

x∈D\{0}

φj

(

x
)∂vj

(
x
)

∂y
(
γj
(
x
)
− γj

(
h
))

+
Δwj + o

(

Δwj

)

(B.9) 

Hence, it follows that 

∂+φc
j

(
h
)

∂wj
= lim

Δwj↓0

Qc

(

0; j, h

)

+
∑

k∕=j,0

∑

x∈D\{0}
Qc(k, x; j, h) +

∑

x∈D\{h,0}
Qc(j, x; j, h) + Qc

(

j, h; j, h

)

− φj

(

h

)

Δwj
(B.10) 

Hence, (B.6) to (B.10) yield 

∂+ log φc
j (h)

∂wj
=
∑

x∈D\{0}

φj(x)
∂vj(h)

(
γj(h) − γj(x)

)

+

∂y
−
∑

x∈D\{0}

φj(x)
∂vj(x)

(
γj(x) − γj(h)

)

+

∂y

+
∑

k∕=j

∑

x∈D\{0}

φk(x) ·
∂vj(h)γj(h)

∂y
+φ(0)

∂vj(h)γj(h)
∂y  

which also holds for h = 0 and therefore proves the stated result. 
Consider next the cross marginal compensated effect implied by a wage rate increase in sector k, ceteris paribus. Assume that Δwk is small 

and positive, k ∕= j.Then it follows that yrx = y when r ∕= k and ykx < y which implies that Qc(r, x; j, h)= Qc(0; j, h)= 0 when (r, x) ∕= (j, h).
Furthermore, it follows from (B.2) that 

Qc(j, h, j, h)=
exp
(
vj
(
h;wj, y

))

∑
x∈D\{0}exp

(

v
(

x; w̃k, y
))

+
∑

r∕=k
∑

x∈D\{0}exp(vr(x;wr, y)) + exp(v(0; y))
.

Hence, 

Qc

(

j, h; j, h

)

− φj

(

h

)

=

exp
(

vj

(

h;wj, y
))
∑

x∈D\[0}

[

exp
(

vk

(

x;wk, y
))

− exp
(

vk

(

x; w̃k, y
))]

M(y)2 + o

(

Δwk

)

By using the mean value Theorem the latter expression becomes 

Qc

(

j, h; j, h

)

− φj

(

h

)

= − φj

(

h

)
∑

x∈D\{0}

φk(x)
∂vk(x)
∂wk

+ o

(

Δwk

)

=
∂φj
(
h
)

∂wk
Δwk + o

(

Δwk

)

(B.11) 

Hence, it follows from (B.1) and (B.11) that 

∂+φc
j

(
h
)

∂wk
= lim

Δwk↓0

∑

r

∑

x∈D\{0}
Qc
(
r, x; j, h

)
− φj

(
h
)

Δwk
=

∑

x∈D\{0}
Qc
(
j, x; j, h

)
− φj

(
h
)

Δwk
=

Qc
(
j, h; j, h

)
− φj

(
h
)

Δwk
.

Similarly, we get that Qc(r, x; 0)= 0 and 

Qc
(

0; 0
)

− φ
(

0
)

=
∂φ(0)
∂wk

Δwk + o
(

Δwk

)

Thus, in this case we conclude that 

∂+φj(h)
∂wk

=
∂φj(h)

∂wk
and

∂+φ(0)
∂wk

=
∂φ(0)
∂wk

.

Consider next the direct marginal effect when the wage rate in sector j decreases, that is, Δwjis negative. In this case yrx(wr)= y when r ∕= j 
and yjx(w̃j)> y for all x. As a result we obtain from (B.1) that Qc(r, x, j, h)= 0 for r ∕= j, and Qc(0; j, h) = 0. In this case it follows from (B.1) 
and Lemma B2 that 

Qc
(

j, x, j, h
)

=φj

(

h
)

φj

(

x
)∂vj

(
h
)

∂y
(
yjx
(
wj
)
− yjh

(
wj
))

+
+ o
(

Δwj

)

= − φj

(

h
)

φj

(

x
)∂vj

(
h
)

∂y

(
(
γj
(
x
)
− γj

(
h
))

+
Δwj + o

(

Δwj

)

(B.12) 

Furthermore, using (B.2) we get that  
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Qc

(

j, h; j, h

)

− φj

(

h

)

=
exp
(
vj
(
h
))

M̃
(

yjh

)) − φj

(

h

)

= − φj

⎛

⎝h

⎞

⎠

∑

x∈D\{0}

(

exp
(

vj

(

x; w̃j, yjh

)

− exp
(

vj

(

x;wj, y
)))

+

+
∑
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⎛

⎜
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(

x
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(
x
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(
h
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(
x
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+
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∑
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∑
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(

x
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(

h
)
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(
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+Δwjφj

(
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φ
(

0
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. (B.13) 

From (B.12) and (B.13) we therefore obtain that 

∂− φc
j

(
h
)

∂wj
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∑
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)
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(
h
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(

h

)
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(

x
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(
h
)
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x
)
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(
h
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+
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(

h
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∑
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(

x
)∂vj

(
x
)
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(
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(
h
)
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(
x
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+
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(

h
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(

h
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(

x
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(

h
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(

h
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φ

(

0

)
∂v(0)

∂y
.

Consider finally the cross compensated marginal effects when Δwk < 0. In this case it follows that yrx = yfor r ∕= k and ykx(w̃k) > y. Hence, 
(B.2) implies that QH(j, h; j, h) = φj(h). Furthermore, (B.1) implies that QH(r, x; j, h) = 0 for r ∕= kand (r, x) ∕= (j, h). Hence, using (B.1) we 
obtain that 

∑

r

∑

x∈D
QH(r, x; j, h) − φk(h)=

∑
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x
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/
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By dividing the expression above by Δwkand letting Δwktend towards zero we get 

∂− φj(h)
∂wk

= − φj(h)
∂vj(h)
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∑
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Similarly, it follows that 

∂− φ(0)
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Q.E.D. 

Proof of Corollary 5: It follows from Theorem 2 that 
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Next, note that 

γj(h) −
(
γj(h) − γj(x)

)

+
= γj(x) −

(
γj(x) − γj(h)

)

+
=min

(
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)
.
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Hence, the above expression reduces to 

∂+φc
j

(
h
)

∂wj
−

∂φj
(
h
)

∂wj
=φj

(

h

)
∑

x∈D

(∂vj
(
x
)

∂y
−

∂vj
(
h
)

∂y

)

φj

(

x

)

min
(
γj
(
h
)
, γj
(
x
))
.

Similarly, 
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. Q.E.D. 

Proof of Corollary 6: From Theorem 2 it follows that 
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The remaining part of Corollary 6 is proved in a similar way. 
Q.E.D. 
Proof of Corollary 7: Recall that − ∂vj(h)/∂yis increasing in h. The covariance  
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(
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is therefore positive and greater than the covariance 
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(
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(
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because in the latter expression ∂vj(h̃
′

j)/∂yis independent of h̃j. Hence, the result of Corollary 7 follows from Corollary 6. 
Q.E.D. 

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jocm.2021.100326. 
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