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A B S T R A C T

Ghana is experiencing its third gold rush, and this paper sheds light on the socioeconomic impacts of this rapid
expansion in industrial production. Using a rich dataset consisting of geocoded household data combined with
detailed information on gold mining activities, we conduct two types of difference-in-differences estimations
that provide complementary evidence. The first is a local-level analysis that identifies an economic footprint area
very close to a mine, and the second is a district-level analysis that captures the fiscal channel. The results
indicate that men are more likely to benefit from direct employment as miners compared to men further away,
and that women in mining communities may more likely gain from indirect employment opportunities and earn
cash for work. We also find that infant mortality rates decrease significantly in mining communities, compared
to the evolution in communities further away.

1. Introduction

The mining sector in Africa is growing rapidly and is the main re-
cipient of foreign direct investment (World Bank, 2011). The welfare
effects of this sector are not well understood, although a literature has
recently developed around this question. The main contribution of this
paper is to shed light on the welfare effects of gold mining in a detailed,
in-depth country study of Ghana, a country with a long tradition of gold
mining and a recent, large expansion in capital-intensive and industrial-
scale production.

A second contribution of this paper is to show the importance of
decomposing the effects with respect to distance from the mines. Given
the spatial heterogeneity of the results, we explore the effects in an
individual-level, difference-in-differences analysis by using spatial lag
models to allow for nonlinear effects with distance from mine. We also
allow for spillovers across districts, in a district-level analysis. We use
two complementary geocoded household data sets to analyze outcomes
in Ghana: the Demographic and Health Survey (DHS) and the Ghana
Living Standard Survey (GLSS), which provide information on a wide
range of welfare outcomes.

The paper contributes to the growing literature on the local effects
of mining. Much of the academic interest in natural resources is focused

on country-wide effects, and this research discusses whether the dis-
covery of natural resources is a blessing or a curse to the national
economy. Natural resource dependence at the national level has been
linked to worsening economic and political outcomes, such as weaker
institutions, and more corruption and conflict (see Frankel, 2012 and
van der Ploeg, 2011 for an overview). While all these effects can have
household-level implications, fewer analyses have, thus far, analyzed
the geographic dispersion of such impacts. A recent literature on the
local and subnational effects of natural resources contributes to the
understanding of such effects (for example Aragón and Rud, 2013,
2015; Axbard et al., 2016; Benshaul-Tolonen, 2019a, 2019b; Caselli and
Michaels, 2013; Corno and de Walque, 2012; Fafchamps et al., 2016;
Kotsadam and Tolonen, 2016; Loayza et al., 2013; Michaels, 2011; von
der Goltz and Barnwal, 2019; Wilson, 2012). A growing number of
papers explore the mining industry, in particular, see Aragón et al.
(2015) for an overview. We contribute to this literature by showing the
importance of analyzing local level effects in addition to district level
effects in a one-country case study.

Aragón and Rud (2013) provided the seminal work exploring the
economic effects of one very large mine in Peru. They find that the
expansion of the mine had poverty-reducing effects, but only in con-
junction with policies for local procurement. Moreover, some of the
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mining-related papers have focused on mining in an African context,
exploring a range of outcomes, including HIV-transmission and sexual
risk taking (Corno and de Walque, 2012; Wilson, 2012), women’s em-
powerment (Benshaul-Tolonen, 2019b), infant mortality (Benshaul-
Tolonen, 2019a) and labor market outcomes (Kotsadam and Tolonen,
2016). Mining is also associated with more economic activity measured
by nightlights (Benshaul-Tolonen, 2019a; Mamo et al., 2019).

Kotsadam and Tolonen (2016) use DHS data from Africa, and find
that mine openings cause women to shift from agriculture to service
production and that women become more likely to work for cash and
year-round as opposed to seasonally. Continuing this analysis,
Benshaul-Tolonen (2019b) explores the links between mining and fe-
male empowerment in eight gold-producing countries in East and West
Africa, including Ghana. Women in gold mining communities have
more diversified labor markets opportunities, better access to health
care, and are less likely to accept domestic violence. In addition, infant
mortality rates decrease with up to 50% in mining communities, from
very high initial levels (Benshaul-Tolonen, 2019a). In a study that fo-
cuses exclusively on Ghana, Aragón and Rud (2013) explore the link
between pollution from mining and agricultural productivity. The re-
sults point toward decreasing agricultural productivity because of en-
vironmental pollution and soil degradation, which could have negative
welfare effects on households that do not engage in mining activities or
in indirectly stimulated sectors. Lower productivity in agriculture could
potentially push households to engage in mining-related sectors, in
addition to pull factors such as higher wage earnings in the stimulated
sectors.

We explore the effects of mining activity on employment, earnings,
expenditure, and children’s health outcomes in local communities and
in districts with gold mining. We combine the DHS and GLSS with
production data for 17 large-scale gold mines in Ghana. We find that a
new large-scale gold mine changes economic outcomes, such as access
to employment and cash earnings. In addition, it raises local wages and
expenditure on housing and energy.

An important welfare indicator in developing countries is infant
mortality, and we note a large and significant decrease in mortality
rates among young children, at both the local and district levels.1 We
hypothesize that increased access to prenatal care is one of the me-
chanisms behind the increased survival rate.

We suggest interpreting the local effects as being additional to the
district-level effects; that is, the mine affects the mining district pre-
dominantly through the fiscal channel, and local mining communities
mainly through employment generation, and other localized factors.
Overall, the results are more robustly estimated at the district level than
at the individual level, and we find no indications of positive spillover
effects across districts. This is in line with a public spending hypothesis,
where mining districts benefit more than adjacent non-mining districts
through the fiscal revenue channel, since 10 percent of mining royalties
are redistributed to mining districts.

2. Gold mining in Ghana

Ghana has a long tradition of gold mining and has produced a
substantial portion of the world’s gold for over 1000 years (see Hilson
(2002) for an extensive overview of gold production in Ghana). During
colonial British rule, the country was named the Gold Coast Colony, and
gold production was booming. The first gold rush occurred between
1892 and 1901, and the second after World War I. Gold production
decreased at the dawn of independence in 1957, and remained low until
the 1980s. Over the last 20 years, Ghana has been experiencing its third
gold rush. During this period, annual gold production has increased by
700 percent, as shown in Fig. 1. It is the expansion that has happened
during this recent gold rush that is used in this analysis to understand

the socioeconomic effects of mining. The high international gold price
was a driving factor in the expansion of small-scale mining, such as the
2700% increase in gold mining territory around the Offin River be-
tween 2008 and 2012 (Hausermann et al., 2018). Between 2006 and
2012, two large-scale mines opened in Ghana, but no mine closed down
(Table 1) possibly due to the high gold price increasing profitability and
extending life length.

The expansion across artisanal small-, medium-, and large-scale
mining contributed to an increase in total production that rose from
541,147 oz in 1990 to 3,119,823 oz in 2009 according official Ghana
statistics (Bloch and Owusu, 2012). This production increase led to an
increased sector contribution to GDP from 483% (1990) to 578%
(2009), alongside export value of US$304m in 1990, US$702m in
2000, and US$2246m in 2008, reaching 43% of national exports in
2008. Mining related foreign direct investment (FDI) also rose from US
$165m to US$762m between 1995 and 2009. Mining was the dom-
inating sector with between 48% and 94% of mining FDI to total FDI
from 1995 to 2007, until the country saw an incredible increase in non-
mining foreign direct investment (Bloch and Owusu, 2012), following
the discovery of oil in 2007.

Ghana is the second-largest gold producer in Africa after South
Africa, with gold production averaging 77 tons per year (Gajigo et al.,
2012). In 2011, Ghana’s mineral sector accounted for about 14 percent
of total tax revenues and 5.5 percent of the gross domestic product
(GDP) (Bermúdez-Lugo 2011), as well as 44 percent of Ghanian exports
(Gajigo et al., 2012). This makes the gold mining industry one of the
country’s most important industries, and an essential industry to study.

Similar to gold mining in other African countries (see Gajigo et al.
(2012) for an overview), the sector is highly capital intensive, and di-
rect employment generation is, relative to its economic importance,
limited. In 2010, it was estimated that about 20,000 Ghanaian na-
tionals—0.08 percent of the population—were employed in large-scale
mining (Bermudez-Lugo, 2012), despite accounting for 5.5 percent of
GDP. Nonetheless, the spillovers to other sectors of the economy may be
substantial, because nonnationals also work in the mines and wages are
relatively high. Aryee (2001) estimates that, between 1986 and 1998,
large-scale mining injected over US$300 million into the national
economy from salaries alone. In contrast, the increasing shift from
large-scale underground mining to large-scale surface mining may have
suppressed labor demand, leading to shift of laborers into artisanal and
small-scale mining (Yankson and Gough, 2019).

Beyond direct and indirect employment effects, the mining industry
is connected to the wider economy via taxes and royalties. Ghana has
been highlighted as a good example of how mineral-rich countries can
distribute mining wealth, since a proportion of the rents are distributed
to the local communities (Standing and Hilson, 2013). The mining
royalty paid by mining companies in Ghana was 3 percent until 2010,
which was the average rate for gold production in Africa (Gajigo et al.,
2012), but increased to 5 percent in 2010 (Standing and Hilson, 2013).
Of this money, 80 percent goes to the general government budget, 10
percent goes to the administration of mining oversight, and 10 percent
supports district administration (Garvin et al., 2009). Between 1993
and 1998, about US$17 million was distributed to local mining com-
munities (Aryee, 2001). While considered a model of best practice,
there is still a worry that the beneficial effects of allocations to the
districts are undermined by elite capture and corruption at the district
level (Standing and Hilson, 2013). For our analysis, the scheme implies
that it may be necessary to conduct a district-level analysis in addition
to the more local-level analyses.

12 currently active mines dominate the sector, and there are an
additional five suspended mines that have been in production in recent
decades. Table 1 presents a full list of the mines, the year they opened,
and their status as of December 2012. Company name and country are
for the main shareowner in the mine. Most of these 17 mines have
foreign ownership, such as Australian, Canadian, or South African,
sometimes in partnership with Ghanaian firms or the Ghanaian state.1 In the 2010 Ghana population census average district size is 112,000
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Most are open-pit mines, although a few consist of a combination of
open-pit and underground operations.

Alongside the large-scale, capital-intensive mining industry in
Ghana, there is an artisanal and small-scale mining sector (ASM). ASM
activities were legalized in 1984, when the state loosened its monopoly
on gold mining. In Ghana, as in many other African countries, the sector
is an important employer (ILO, 1999). It is estimated that around 1
million people in Ghana support themselves with revenues from ASM
activities.

The sector is associated with several hazardous labor conditions,
however. This includes child labor, mercury exposure, and risk of mine
collapse (Hilson, 2009). The ASM and the large-scale mining sector
sometimes thrive side by side, but sometimes competing interests lead
to conflict between the two sectors, such as around Prestea, where
domestic galamsey miners (informal small-scale miners) have been in
conflict with the multinational concession owner (Hilson and Yakoleva,
2007). A spatial overlay of ASM sites using satellite imagery show that
as much as 52% of ASM sites are located within the boundaries on
large-scale gold mines, illustrating competition over resources and risk
for conflicts (Patel et al., 2016). In such contexts, gaining and keeping

the Social License to Operate (SLO) may be challenging. A recent case
study from Ghana show that community participation processes, com-
pany track record and timely payments of compensation remain im-
perative to maintaining SLO (Ofori and Ofori, 2019).

In this analysis, we focus solely on large-scale mining. We under-
stand, however, that small- and large-scale operations may be geo-
graphically correlated. Assuming that the start of a large-scale mine
does not affect the likelihood or viability of artisanal and small-scale
mining, it is not a threat to our identifying assumptions. However,
should ASM respond to large-scale activities, either by increasing or
decreasing activity in the close geographic area, we will end up esti-
mating the impact of these sectors jointly. In a later stage, should the
opportunity arise, we encourage researchers to try to disentangle the
effects of small-scale and large-scale mining.

3. Data

To conduct this analysis, we combine different data sources using
spatial analysis. The main mining data is a dataset from InterraRMG
covering all large-scale mines in Ghana, explained in more detail in

Fig. 1. Ghana’s annual gold production and world price of gold.

Table 1
Gold Mines in Ghana.
Source: InterraRMG, 2013.
Name Opening year Closing year Company Country

Ahafo 2006 active Newmont Mining Corp. USA
Bibiani 1998 active Noble Mineral Resources Australia
Bogoso Prestea 1990 active Golden Star Resources USA
Chirano 2005 active Kinross Gold Canada
Damang 1997 active Gold Fields Ghana Ltd. South Africa
Edikan (Ayanfuri) 1994 active Perseus Mining Australia
Iduapriem 1992 active AngloGold Ashanti South Africa
Jeni (Bonte) 1998 2003 Akrokeri-Ashanti Canada
Konongo 1990 active LionGold Corp. Singapore
Kwabeng 1990 1993 Akrokeri-Ashanti Canada
Nzema 2011 active Endeavour Canada
Obotan 1997 2001 PMI Gold Canada
Obuasi 1990 active AngloGold Ashanti South Africa
Prestea Sankofa 1990 2001 Anglogold Ashanti South Africa
Tarkwa 1990 active Gold Fields Ghana Ltd. South Africa
Teberebie 1990 2005 Anglogold Ashanti South Africa
Wassa 1999 active Golden Star Resources USA

Note: Active is production status as of December 2012, the last available data point.
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section 3.1. This dataset is linked to survey data from the DHS and
GLSS, using spatial information. Geographical coordinates of enu-
meration areas in GLSS are from Ghana Statistical Services (GSS).2
Point coordinates (global positioning system [GPS]) for the surveyed
DHS clusters3 allow us to match all individuals to one or several mineral
mines. We do this in two ways.

First, we calculate distance spans from an exact mine location given
by its GPS coordinates, and match surveyed individuals to mines. These
are concentric circles with radiuses of 10, 20, and 30 km (km), and so
on, up to 100 km and beyond. In the baseline analysis where we use a
cutoff distance of 20 km, we assume there is little economic footprint
beyond that distance. Of course, any such distance is arbitrarily chosen,
which is why we try different specifications to explore the spatial het-
erogeneity by varying this distance (using 10 km, 20 km, through
50 km) as well as a spatial lag structure (using 0 to 10 km, 10 to 20 km,
through 40 to 50 km distance bins).4

Second, we collapse the DHS mining data at the district level.5 The
number of districts has changed over time in Ghana, because districts
with high population growth have been split into smaller districts. To
avoid endogeneity concerns, we use the baseline number of districts
that existed at the start of our analysis period, which are 137. Eleven of
these districts have industrial mining. Because some mines are close to
district boundaries, we additionally test whether there is an effect in
neighboring districts.

3.1. Resource data

The Raw Materials Data are from IntierraRMG (2013). The data set
contains information on past or current industrial mines. All mines have
information on annual production volumes, ownership structure, and
GPS coordinates on location. We complete this data with exact geo-
graphic location data from MineAtlas (2013), where satellite imagery
shows the actual mine boundaries, which allows us to identify and
update the center point of each mine. The production data and own-
ership information are double-checked against the companies’ annual
reports.

For Ghana, this exercise results in 17 industrial mines tracked over
time. We have annual production levels from 1990 until 2012. As
mentioned, Table 1 shows the mining companies active in Ghana
during recent decades, with opening and closing years (although some
were closed in between, and are not presented in the table). Fig. 2
shows the geographic distribution of these mines.

3.2. Household data

We use microdata from the DHS, obtained from standardized sur-
veys across years and countries. We combine the respondents from all
four DHS standard surveys in Ghana for which there are geographic
identifiers. The total data set includes 19,705 women (of which 12,392
live within 100 km of a mine) aged 15–49 from 137 districts. They were
surveyed in 1993, 1998, 2003, and 2008,6 and live in 1623 survey
clusters. Since the DHS surveys focus on women, the surveys of women

will be the main source of data. However, we also use the surveys of
men, which give us data from the same four survey years, but with a
total number of 12,294 individuals, of which 7491 men live within
100 km of a mine. In addition, the DHS data collect records of all
children born within the five years prior to the surveying. Of the 12,174
children born to the surveyed women within the last five years, 6888
were born to women currently residing within 100 km of a mine. See
Appendix Table A1 for definition of outcome variables.

We complement the analysis with household data from the GLSS
collected in the years—1998–99, 2004–05, and 2012–13. These data
are a good complement to the DHS data, because they have a stronger
focus on all households’ members, rather than focusing only on women
and young children. In addition, they provide more detailed informa-
tion on labor market participation, such as exact profession (where, for
example, being a miner is a possible outcome), hours worked, and a
wage indicator. The data estimate household expenditure and house-
hold income. Wages, income, and expenditure can, however, be diffi-
cult to measure in economies where nonmonetary compensation for
labor and subsistence farming are common practices.

4. Empirical strategies

4.1. Individual-level difference-in-differences

Time-varying data on production and repeated survey data allow us
to use a difference-in-differences approach.7 However, due to the spa-
tial nature of our data and the fact that some mines are spatially clus-
tered, we use a strategy developed by Benshaul-Tolonen (2019b). The
difference-in-difference model compares the treatment group (close to
mines) before and after the mine opening, while removing the change
that happens in the control group (far away from mines) over time
under the assumption that such changes reflect underlying temporal
variation common to both treatment and control areas.

We limit the data to include households within 100 km of a mine
location and estimate the following:
Yivt = β0 + β1 ∙ activet + β2 ∙ mine + β3 ∙ activet * mine + αd + gt +
λXi + εivt, (1)
where the outcome of an individual i in cluster v, and for year t is re-
gressed on district and year fixed effects, a dummy for whether the
respondent lives within 20 km of a mine (which is a current or future
mine8), a dummy for whether the mine is active at the time of the
survey (active), an interaction term between active mines and living
close to a mine (activet * mine), and a vector of individual-level control
variables. Mine is the terminology chosen to capture a known gold re-
source in the ground, regardless of whether it is being extracted or not.
In all regressions, we also control for living in an urban area, years of
education, and age.

The choice of district – rather than cluster – fixed effect is informed
by the understanding that meaningful time-invariant factors - such as
mining laws, level of development, local political institutions, norms
regarding environment, women’s participation in the labor market, etc.
- that influence exploitation of the mine happens at the district level.
Including district fixed effects, we control for various institutional and
cultural factors at the district level that are stable over time. Including

2 The data was shared by Aragón and Rud (2013)
3 Both the DHS and GLSS enumeration area coordinates have a 1-5 km offset.

The DHS clusters have up to 10km displacement in 1% of the cases.
4 The distances are radii from mine center point, and form concentric circles

around the mine.
5 The DHS and the GLSS data are representative at the regional level, and not

at the district level. Since the regional level is too aggregated, we do the ana-
lysis at the district level, but note that the sample may not be representative.
6 The first mines were opened in 1990, prior to the first household survey. Ten

mines were opened after the first DHS in 1993. There is less variation in the
data set using GLSS where the first households were surveyed in 1998, i.e. 8
years after the first mine opened. However, the DHS data include births re-
corded from 1987, which is prior to all mine openings.

7 We have not done a synthetic control approach because of limited ability to
explore pretreatment trends.
8 A current or future mine could also be called a deposit. We have chosen

against this terminology as there may be known deposits in Ghana that never
started actively producing. Such deposits are not included in our dataset and
thus not in the analysis. In addition, deposits may be considered all existing
geological deposits whether or not known to man, or those that have been
discovered. The latter being truly exogenous, while known deposits and
“mines” according to our definitions are not truly exogenous.
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district fixed effects also ensures that we are not only capturing effects
from transfers or the fiscal system as we compare individuals within the
same districts. With this method we capture the geographic spillover
effects in the vicinity of the mine. Moreover, cluster fixed effects are not
possible because of clusters are not repeatedly sampled over time.
However, since the estimation is at individual level, all standard errors
are clustered at the DHS cluster level.

The sample is restricted to individuals living within 100 km of a
deposit location (mine), so many parts of Northern Ghana where there
are few gold mines are not included in the analysis. The sample re-
striction is created by using the time-stable continuous distance mea-
sure that we calculate from each mine location to each DHS cluster.
This is also the distance measure that we use to create the “mine”
dummy, which captures whether the cluster lies within 20 km of a
known gold deposit. Note that we only consider deposits that have been
in production at some point until December 2012.

All households are thus within 100 km of one, or several, gold de-
posits. To ascertain whether there is any gold production in these po-
tential mining sites, we construct an indicator variable active, which
takes a value of 1 if there is at least one mine within 100 km that was
extracting gold in the year the household was surveyed, and 0 other-
wise. While the mine dummy captures some of the special character-
istics of mining areas (for example, whether mines tend to open in less
urban areas), the active dummy captures long-range spillovers of
mining.

The treatment effect that we are mostly interested in is captured
with the active*mine coefficient. The coefficient for β3 tells us what the
effect of being close to an actively producing mine is. Since the inclu-
sion of the three dummies (active, mine, and active*mine) captures the
difference between close and far, and before and after mine opening, we
have created a difference-in-differences estimator.

Panel B of Fig. 2 shows this strategy in a map, where the small blue
circles show the treatment areas, and the 100-km-radius green circles
show the geographic areas that constitute the control group. As is
common in difference-in-differences analysis, the estimation relies on
treatment and control groups being on similar trajectories before mine
opening. This assumption is discussed below when we investigate the
balance of treatment and control areas. In particular, we test for

differences in outcomes in areas where mining has not started and
compare this to areas farther away.

While we cannot show the exogeneity of the opening year to local
socioeconomic variables, this assumption has been made in previous
literature (e.g. Aragon and Rud, 2015; Benshaul-Tolonen, 2019a,
2019b; Kotsadam and Tolonen, 2016; von der Goltz and Barnwal,
2019). In addition, Benshaul-Tolonen (2019a, 2019b) who explore gold
mining, in particular, point to (i) the rapid increase in large-scale gold
mining that occurred during the recent mineral price supercycle, (ii) the
dominance of large multinational firms who are not relying on local
labor market conditions, (iii) and their lower reliance on local infra-
structure compared with bulkier metals and minerals, as gold mining
firms may fly out their resources. Despite this, the assumption of exo-
genous opening year or exact location remain untested.

In a second method, we use a spatial lag model. Such a model allows
for nonlinear effects with distance. We divide the plane into 10-km
distance bins and estimate the model with a full set of distance bin
dummies.

= + + + + + +Y mine active mine g Xivt
d

d
d

d t d t i ivt0

(2)
for d ∈ {0–10, 10–20, …, 80–90}.

This method, in addition to varying the cutoff point in the baseline
estimation strategy, allows us to identify in more detail the spatial
structure of the data. Using this method, we can support our choice of
baseline cutoff distance.

Two limitations to both individual level analysis are that (i) clusters
are not repeatedly sampled, so cluster fixed effects cannot be included,
(ii) the data is not representative below the regional level and no
weighting can be undertaken to ensure representability.

4.2. District-level analysis

While the estimation strategy in (1) captures some spillovers beyond
the 20 km, and strategy (2) maps the economic footprint of the mine up
to 100 km, it does not capture district-level treatment. District level is
an additional interesting level of analysis, since it captures effects

Fig. 2. Gold mines and DHS clusters in Ghana.
Note: Panel A shows the location of the gold mines that were active during the study period. Around each circle, a 20-km radius is marked. These 40-km-wide areas
are the baseline treatment areas in the analysis. Panel B shows the 100-km treatment areas and the distribution of the DHS clusters. Road data is an alternative way of
defining distance from mines, but time series data on roads is not available.
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through the fiscal channel, and has previously been employed in, for
example, Loayza et al. (2013) to measure income inequality across
mining districts in Peru. With Ghana’s tax-sharing rules, district tax
income and royalties increase with expansion in gold extraction (for
more information, see section 2). In the district-level analysis, we first
use mine openings as the independent variable, and then we use a ri-
cher specification with production levels. Given the spatial location of
mines near district borders, we additionally analyze spatial spillovers
from mining districts to neighboring districts.

4.2.1. Difference-in-differences at the district level
The first approach is similar to the local-level approach, only an

individual is defined as being treated by a mine opening if she or he
lives in a district with at least one active mine. In total, our mines are
located in 11 mining districts (see Fig. 3). For districts with several
mines, we define the whole district as active whenever at least one mine
is active. Later, we will also consider district total annual production
(tons of gold extracted), and thereby the effect of the intensity of pro-
duction is recognized.

The baseline specification is shown in the following equation:

= + + + +Y active district g X_idt dt d t it idt1 (3)

The outcome for individual i in district d in time period t is regressed
on district and year fixed effects, an indicator for whether the in-
dividual lived in an active mine district at the time of the interview, and
time varying individual-level factors. Even though the treatment is
defined at the district level, we use individual-level data to be able to
control for individual- level factors and explore heterogeneity at the
individual level. The standard errors are, however, clustered at the
district level to take into account the interdependence induced by the
higher-level treatment. Since the treatment variable is at the same level
as our district fixed effects, the β1 coefficients are directly interpretable
as difference-in-differences estimates. That is, they capture the differ-
ence between mining districts and nonmining districts before and after
mining starts.

In estimating the district-level effects of mine openings on birth
outcomes, we control for birth-year fixed effects instead of survey-year
fixed effects, as we are interested in the effect of mining at birth. In
investigating the effects on birth outcomes and infant mortality, we
further classify a child as treated if he or she is born in a district with

Fig. 3. District-level analysis in Ghana.
Note: This figure shows the mine locations and the district in which the mines are located.
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active mining during the birth year (in contrast to whether the mine is
active when the mother was interviewed). We also include controls for
the age of the child in the survey year in the child and birth outcome
regressions (but, naturally, not in the infant mortality regressions).

5. Results using individual-level difference-in-differences strategy

In this section, we present results using the two difference-in-dif-
ferences strategies. Since the individual analysis contains district fixed
effects, the two strategies are complementary. While the district-level
analysis informs us about differences across and within districts over
time, the local-level analysis gives us the additional impact at the very
local level. This means that any differences in effects across district and
local analysis should not be interpreted as inconsistencies, but rather as
differential and additional impacts.

In a difference-in-differences setting, it is important that the sample
is balanced, assuming that the treatment and control groups are on
similar trajectories. Table 2 shows the summary statistics for the wo-
men’s surveys across four different groups, close and far away, and
before and during the mine’s production phase. Columns 1 and 3 show
mean values of the population that live far away from mines, before and

during mining respectively. Columns 2 and 4, in contrast, show the
univariate regression coefficients using OLS, highlighting the difference
between the population living close (e.g. Column 2) and far away (e.g.
Column 1) before mining.

In the pre-period, women in communities that are close to mines are
less urban, poorer, have more children and are less likely migrants. In
contrast, women are of similar age, have similar education and occu-
pation (but slightly more likely earning cash). Note that these are raw
mean values not controlling for any regional and individual differences.
Overall, these differences are in line with previous research finding that
large-scale mines tend to open in more rural and less developed com-
munities (Benshaul-Tolonen, 2019b; Kotsadam and Tolonen, 2016).

In active mining communities, women are still less likely to live in
urban areas (although the gap between mining and non-mining areas
may be smaller) than in non-mining communities, but more likely to
have some education. The difference-in-difference estimation strategy
assumes similar trends over time across the treatment (close to mines)
and control group (far away from mines), in absence of the gold mining
expansion. While this assumption cannot be tested using our dataset,
previous analyses have found evidence for parallel pre-trends in infant
mortality and night lights (Benshaul-Tolonen, 2019a) for gold mining
countries in West and East Africa (including Ghana). The baseline dif-
ferences in observable characteristics – in particular, lower levels of
economic development preceding the mine opening - indicate that a
cross-sectional approach using only the post-period may not be suffi-
cient to understand the impact of gold mining on socio-economic
variables.

Appendix Table A2 also shows selected child health outcomes as
summary statistics across the four treatment groups. We note that, once
again, the sample looks quite balanced in the first three columns, al-
though children seem to be worse off in communities close to mines
that have not started producing, evidenced by the fact that infant
mortality is 8 percent compared to 7 percent farther away, and 6 per-
cent in communities with active mines. The anthropometrics height-for-
age (stunting or chronic malnutrition), weight-for-age (wasting or acute
malnutrition), and weight-for-height (underweight) show that the
children living in mining communities before the mine started oper-
ating have the lowest scores of all four groups. The outcomes seem to
improve with mining, although not enough to offset the initial adverse
situation.

To test for exogeneity, we run regressions using baseline individual-
level data to explore changes in observable characteristics among
women (the main part of the sample). Table 3 shows that there are no
significant effects of the mine opening on the age structure, migration
history, marital status, fertility, or education, using the difference-in-
difference specification with a full set of controls. If anything, it seems
that women in active mining communities are marginally older, more
likely to never have moved, and more likely to be or have been in a
cohabiting relationship or married. Given the women’s slightly higher
age, it is not surprising to find that they have higher fertility and lower
schooling (assuming that schooling has increased over time in Ghana).
All these estimates are, however, insignificant.

Table 2
Summary statistics for DHS women’s survey.

(1) (2) (3) (4)
Before mining During Mining

>20 km <20 km >20 km <20 km
Mean Coefficient Mean Coefficient

Woman Characteristics
Age 28.79 0.836 28.95 −0.352
Total children 2.18 0.417* 2.56 −0.035
Wealth 3.85 −0.619** 3.33 −0.028
Nonmigrant 0.32 0.123** 0.33 −0.028
Urban 0.62 −0.300** 0.49 −0.150**
No education 0.17 −0.045 0.20 −0.042**
< 3 years education 0.77 0.035 0.74 0.045**

Woman occupation
Earns cash 0.90 0.059** 0.89 0.007
Works all year 0.88 −0.047 0.88 0.023
Not working 0.25 −0.021 0.24 −0.015
Agriculture 0.19 0.055 0.25 0.011
Service & sales 0.39 0.057 0.35 0.016
Professional 0.05 −0.028 0.04 −0.010
Manual 0.11 −0.063*** 0.12 −0.003

Note: Column (1) is a sample at 20 to 100 km from a nonactive mine.
Column (2) difference for sample at 0–20 km from an nonactive, compared with
column (1).
Column (3) is a sample within 20–100 km of an active mine.
Column (4) difference for sample at 0–20 km of an active mine, compared with
Column (3).
*** p< 0.01.
** p< 0.05.
* p<0.1. Univariate regression model.

Table 3
Observable characteristics in the DHS individual data for women.

age non-migrant ever married currently cohabiting ever divorced total fertility any schooling

woman partner

active*mine 0.263 0.028 0.025 0.018 −0.003 0.030 −0.036 −0.003
(0.510) (0.042) (0.027) (0.029) (0.017) (0.115) (0.031) (0.030)

Note: Robust standard errors clustered at the DHS cluster level in parentheses. All regressions control for year and district fixed effects, urban dummy, age (not
column 1), and years of education (not columns 6 and 7). Active is active status of mine in the survey year. *** p < 0.01, **p < 0.05.
* p < 0.1.
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5.1. Employment outcomes

Using the difference-in-differences approach (Eq.1), we estimate
results on occupation, child health, and inequality. First, panel A of
Table 4 indicates that women in active mining communities (active*-
mine) are insignificantly more likely to work in service and sales and
less in agriculture, and 1.7 percentage points less likely to work as
professionals (statistically significant). There is no change in the like-
lihood that she is not working. These 5 categories stem from the same
occupational variable in the DHS data, and are mutually exclusive. The
surveyed individual is told to report their main occupation. The coef-
ficients can therefore be interpreted as relative increases of each spe-
cific sector. Women are more likely to earn cash for work, and the
likelihood increases by 5.4 percentage points, which is equal to a 6
percent increase.

While the directionality of the occupational outcomes is broadly in
line with previous results (Kotsadam and Tolonen, 2016, for 29 African
countries, and Benshaul-Tolonen (2019b) for 8 African gold-producing
countries), the estimates are largely insignificant, potentially due to a
limited sample size. Two categories have positive, albeit insignificant,
coefficients: services and manual labor. The (insignificant) estimate for
service jobs9 is equivalent to 6.7% increased employment, and manual
labor 10.2%, alongside which the likelihood that a woman earns cash
for her work increases with 6%.

For men (panel B of Table 4), the estimates point toward an increase
in agriculture, services, and professional (all statistically insignificant
estimates), but a decreased likelihood of working in manual labor.
Results for men in panel B are largely insignificant, and it is worthwhile
noting that the sample size is only slightly above 50% than the women
sample size due to DHS sampling frame.

Two further caveats should be noted: (i) with many variables tested,
such evidence should not be given too much weight, (ii) number of
sampled men in the treatment category is quite small. Out of 7157
sampled med, only 484 men live close to active mines. A bigger treated
sample would provide more reliable results.10

5.2. Child health

We explore effects on child health, such as size at birth, infant
mortality, anthropometrics, and incidence of cough, diarrhea, and
fever. Panel A and Panel B use different variable definitions because of
the nature of the data. Panel A uses three variables that reflect condi-
tions around the year of birth of the child. Note that women report their
birth history, in what year the child was born, and the baby’s health.
She reports this information in the survey year, but retroactively, re-
collecting the year of birth. Therefore, we deem that the birth year
mining activity is more relevant than the survey year mining activity
for the outcomes in Panel A. In particular, we test if an active mine
nearby in the birth year of the child influences the baby’s size at birth,
infant mortality, and the number of antenatal visits. In Panel B we use
the main specification of mining activity in the survey year, as these
variables are more reflective of current conditions in the survey year
than past conditions around the time of the birth.

Panel A of Table 5 shows that infants in active mine communities
are less likely to be born large, and that the mother had insignificantly
fewer prenatal visits. However, infant mortality decreases by 4 per-
centage points. Splitting the sample by gender, we note that this de-
crease is only statistically significant for boys at an effect size of 6.6
percentage points.

An active mine is associated with a decrease in cough among chil-
dren under age five (panel B of Table 5), and children are also (insig-
nificantly) more likely to have a health card. An active mine is

Table 4
OLS estimates women’s and men’s occupation in the DHS individual-level analysis.

Occupation

agriculture service sales professional manual labor not working earns cash works all year

PANEL A: Women
active*mine −0.025 0.024 −0.017* 0.012 0.006 0.054** −0.013

(0.039) (0.031) (0.009) (0.021) (0.023) (0.026) (0.033)
mine −0.025 0.056* −0.001 −0.012 −0.018 −0.069*** −0.012

(0.031) (0.029) (0.008) (0.018) (0.020) (0.022) (0.024)
active 0.014 −0.000 −0.006 0.009 −0.016 −0.037** −0.007

(0.015) (0.016) (0.006) (0.011) (0.012) (0.015) (0.016)
Observations 12,176 12,176 12,176 12,176 12,176 9,262 7,085
R-squared 0.350 0.103 0.124 0.024 0.234 0.095 0.042
Mean of dep var. 0.237 0.358 0.045 0.117 0.739 0.891 0.877

PANEL B: Men
active*mine 0.050 0.020 0.027 −0.069* 0.006 −0.013 −0.015

(0.051) (0.020) (0.026) (0.036) (0.023) (0.028) (0.051)
mine −0.060 0.002 0.000 0.041 −0.018 −0.009 0.066*

(0.042) (0.016) (0.020) (0.030) (0.020) (0.028) (0.039)
active 0.000 0.002 −0.001 −0.029 −0.016 −0.107*** −0.025

(0.021) (0.014) (0.015) (0.020) (0.012) (0.039) (0.028)
Observations 7,157 7,157 7,157 7,157 7,157 4,374 2,794
R-squared 0.290 0.415 0.084 0.183 0.076 0.107 0.104
Mean of dep var. 0.328 0.111 0.137 0.214 0.209 0.928 0.841

Note: Robust standard errors clustered at the DHS cluster level in parentheses. All regressions control for year and district fixed effects, urban dummy, age, and years
of education. Active is active status of mine in the survey year.
*** p < 0.01.
** p < 0.05.
* p < 0.1. Results for women’s partners also available upon request. OLS= ordinary least squares. The women and men samples have different sampling frames

and therefore we are not analyzing these results jointly.

9 Service sector jobs in the wake of structural transformation has been found
important in increasing women’s work hours and reduce the gender wage gap
(Ngai and Petrongolo, 2017). 10 Results for sampled women’s partners are similar.
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associated with insignificant decreases in the anthropometrics measures
(World Health Organization measures in standard deviations), such as
height-for-age and weight-for-age. However, the standard errors for
these coefficients are very large relative to the estimated coefficients,
which is why the effects are imprecisely estimated.

5.3. Spatial heterogeneity of results

Thus far we have used a cutoff distance of 20 km. Panel A of Fig. 4
shows that the largest treatment effect for services for women is found
within 10 km of a mine, with an 8 percentage point increase in the
probability that a woman works in the service sector. This is equivalent
to a 22 percent increase in service sector participation. However, this
effect is only statistically significant at the 10 percent level, possibly
due to the small sample size within that distance. This is in contrast to

the dummy for 0–20 km which is insignificant, pointing highly loca-
lized effects on service sector employment for women. Using distance
bin of 30 km, we estimate zero treatment effect on the probability of
service sector employment. Panel B of Fig. 4 shows the results for cash-
earning opportunities, and similarly, we estimate positive treatment
effects within 20 km.

In panel C of Fig. 4, infant mortality is re-estimated using different
distance spans. The decrease in child mortality decreases almost line-
arly with the increase in distance bins, an indication that the effects are
only found close to a mine. The largest drop, and the only significantly
negative drop, is found for the distance bin 0–20 km.

The results above suggest substantial heterogeneity in outcomes and
highlights the importance to explore spatial heterogeneity in the re-
sults. In the following sections we explore plausible explanations for
these outcomes.

Table 5
OLS estimates of birth outcomes, infant survival, and child health in the DHS individual-level analysis.
PANEL A size at birth infant mortality (< 12months) antenatal visits

small average large all boys girls # visits at least 1

active*mine 0.022 0.053 −0.075* −0.041* −0.066** −0.020 −0.151 −0.007
(0.028) (0.041) (0.041) (0.022) (0.030) (0.035) (0.331) (0.028)

mine −0.010 0.071** −0.061** 0.004 0.008 0.001 0.153 0.000
(0.019) (0.028) (0.030) (0.015) (0.020) (0.024) (0.241) (0.019)

active −0.010 0.054** −0.044 0.002 0.014 −0.012 0.012 0.002
(0.016) (0.026) (0.027) (0.014) (0.022) (0.018) (0.209) (0.012)

Observations 6,771 6,771 6,771 5,356 2,718 2,638 5,704 5,704
R-squared 0.031 0.054 0.059 0.135 0.160 0.152 0.186 0.062
Mean of dep var. 0.136 0.359 0.505 0.073 0.08 0.066 5.79 0.941

PANEL B in the last 2 weeks, had: anthropometrics (WHO) in sd has health card

fever cough diarrhea ht/a wt/a wt/ht

active*mine −0.035 −0.061* 0.042 −3.532 −5.208 −0.641 0.014
(0.037) (0.033) (0.027) (11.472) (9.283) (8.948) (0.027)

mine −0.002 −0.006 −0.038 −0.828 3.481 3.853 −0.006
(0.031) (0.028) (0.024) (10.385) (8.574) (7.468) (0.022)

active 0.023 −0.003 −0.033** −1.904 5.265 9.433* 0.009
(0.020) (0.020) (0.016) (5.942) (5.304) (5.183) (0.012)

Observations 6,246 6,257 6,262 5,627 5,627 5,727 6,378
R-squared 0.024 0.043 0.024 0.136 0.080 0.036 0.084
Mean of dep var. 0.211 0.221 0.164 −101.6 −60.3 −16.7 0.913

Note: In panel A, active is status of mine in birth year; in panel B, active is active status of mine in survey year. Robust standard errors clustered at the DHS cluster
level in parentheses. All regressions control for year and district fixed effects, urban dummy, age, and years of education. *** p < 0.01.
** p < 0.05.
* p < 0.1. OLS= ordinary least squares.

Fig. 4. Varying the cutoff distance: Service sector employment, cash earnings, and infant mortality.
Note: Fig. 4 shows the main treatment coefficients using the baseline estimation strategy (with DHS individual-level data; see Table 4 for more information), but with
different distance cutoffs (10 km, 20 km, 30 km, 40 km, and 50 km). *** p < 0.01, **p < 0.05, *p < 0.1.
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5.4. Difference-in-differences at the district level

The results for female employment in the district-level analysis are
shown in Table 6. Agricultural work decreases for women in mining
districts and manual work increases. Following from this, the likelihood
that a woman is working year-round increases.11 This is similar to what
we saw in the individual-level regressions, but the results are now
statistically significant.

Investigating the district-level effects on children’s health and birth
outcomes in Table 7, we note a higher number of prenatal visits and an
increase in attendance of a midwife in panel A. These results are highly
statistically significant and the effects are economically significant. A
mine opening increases the number of prenatal visits by 0.76 and in-
creases the probability that the birth was preceded by a prenatal visit
supervised by a midwife by 12.5 percentage points. In column 6 of
panel A, we see that mine openings in a district reduce child mortality.
The probability of an infant dying before 12 months of age is reduced
by 8.5 percentage points. Given the importance of child mortality for
human welfare, we strongly encourage future research to investigate
the mechanisms behind these striking results. Since the share of

prenatal visits supervised by a midwife also increases with mine
openings, the results potentially speak to the importance of midwives
for reducing infant mortality.

The effects on child health are, however, not all positive. We note,
particularly, a statistically significant decrease in weight-for-age, but
the other two measures are also negative (panel B of Table 7). Low
weight-for-age is an indicator for acute malnutrition, whereas height-
for-age is an indicator for chronic malnutrition. This could indicate that
mining districts are less food secure.12 Table 7 shows that there are no
effects on illness in the last two weeks.

6. Distributional effects, mechanisms and robustness

6.1. Decomposing results by migration status

We argue that one source of heterogeneity is to consider when ex-
ploring socio-economic impacts and distributional effects of large-scale
mining is migration status. First because mining may cause inward
migration of individuals that are different from the previous local po-
pulation. While it has its limitations, disaggregating the effects between
nonmigrants and migrants may shed some light on the effect on the
initial population. Second, to understand the distributional effects of

Table 6
Effects of mine opening at the district level on female employment.

(1) (2) (3) (4) (5) (6) (7)
not working agriculture service or sales professional manual work earns cash works all year

Active district 0.019 −0.085** 0.034 −0.018** 0.050** −0.021 0.054*
(0.027) (0.042) (0.030) (0.008) (0.020) (0.049) (0.032)

Observations 19,226 19,226 19,226 19,226 19,226 19,270 15,991
R-squared 0.207 0.327 0.128 0.137 0.037 0.213 0.278

Note: Robust standard errors clustered at the district level in parentheses. All regressions control for year and district fixed effects, urban dummy, age, and years of
education. Active is active status of mine in the survey year. ***p < 0.01.
** p < 0.05.
* p < 0.1.

Table 7
Effects of mine opening at the district level on birth outcomes and child health.
PANEL A. (1) (2) (3) (4) (5) (6)

antenatal # visits at least 1 antenatal doctor attended midwife attended has health card died 12 months

active district 0.759*** 0.026 0.055 0.125*** 0.039 −0.085***
(0.244) (0.022) (0.115) (0.033) (0.059) (0.031)

N 9,245 9,245 9,462 9,462 11,047 9,270
R-square 0.242 0.121 0.160 0.154 0.161 0.138

PANEL B. small size at birth, the child was average size large size height for age weight for age weight for height

active district 0.066 0.078 −0.148 −6.333 −23.676** −20.080
(0.057) (0.085) (0.090) (18.753) (9.364) (13.428)

N 11,837 11,007 11,007 9,646 9,646 9,851
R-square 0.041 0.061 0.060 0.199 0.163 0.073

PANEL C. in the last 2 weeks, had

fever cough diarrhea

active district 0.016 0.010 0.058
(0.057) (0.035) (0.036)

N 10,849 10,883 10,887
R-square 0.052 0.046 0.055

Note: Robust standard errors clustered at the district level in parentheses. All regressions control for year and district fixed effects, urban dummy, age, and years of
education. Active is active status of mine in the survey year. Panel b, columns 1, 2, and 3 show size at birth. Panel B, columns 4, 5, and 6 show anthropometrics (new
WHO) in standard deviations. *p < 0.1.
*** p < 0.01.
** p < 0.05.

11 Working year-round is derived from a question if the woman works occa-
sionally, all year or seasonally. Agricultural work also decreases for the partners
of the women (results are available upon request). 12 In Table 5 we saw very small insignificant changes in nutritional status.
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mining we argue that migration status may be an important factor.
In the analysis, we distinguish between nonmigrants (where the

woman respondent report being born in the locality) and migrants
(born elsewhere). We note several caveats with this analysis, the first
being that we cannot follow migrant households before the migration
decision. Therefore, we cannot make any causal claims on changes in
this group over time. We compare migrant households in mining
communities with migrant households elsewhere, and the null hy-
pothesis would be similar trajectory over time. If we reject the null, we
cannot distinguish between selective migration to mining communities
and the impact of the mining. The nonmigrant analysis can plausibly
reflect similar households over time, with the limitation of selective
outward migration. We believe inward migration to mining areas to be
more common than outward migration (in line with Fafchamps et al.,
2016).

Diarrhea is a major concern in many developing countries.
Diarrheal diseases are, in part, a matter of infrastructure, where access
to clean water and proper sanitation are important determinants. To
further understand the effects on diarrhea, we look at the difference
between migrants and nonmigrants and the effects by distance (Fig. 5).
There are, in fact, large differences between the migrant and the non-
migrant populations. Among nonmigrants, a mine opening is associated
with large decreases in incidence, whereas for migrants, the opposite is
true. Considering all children between 0 km and 20 km of an active
mine, children born to migrant mothers are 6.9 percentage points more
likely to have suffered from diarrheal diseases in the two weeks prior to
the start of the survey.

To further understand these effects, we decompose them by distance
bins in a spatial lag model (bottom two graphs in Fig. 5). It becomes
evident that, from a high-level incidence (dashed line) among the ori-
ginal local population (panel A of Fig. 5), the mine has brought sub-
stantial reductions in diarrheal incidence (as shown by the blue line). In
the migrant population, the incidence is actually higher after mine
opening than before, and the likelihood increases by 6.9 percentage

points. The spatial lag model in panel B of Fig. 5 reveals that much of
the effect is driven by a spike in incidence 10 to 20 km away from the
mine center point. If more migrants move to the area because of the
mine, they will be less settled, and health outcomes can deteriorate, on
average, within that population. Nevertheless, we should be careful in
interpreting the effects this way. The mine-induced migration, which
we partly capture here, could be different from the migration hap-
pening further away. The deteriorating status of migrants can thus in
part be because a less-well-off part of the population chooses to migrate
to mining areas, not that they are made worse off because of the mine
activities.

We also explored a decomposition of the anthropometric results
along the migration division, but we found no important differences.

6.2. Access to infrastructure and health care

Another source of heterogeneity is asset ownership and access to
infrastructure. Table 8 shows that fewer households have electricity in
active mining communities, but they spend less time fetching water and
are more likely to own a radio (all estimates are statistically insignif-
icant, however). There is no change in the likelihood of having a flush
toilet. Moreover, it seems that households are just as likely to have
access to a pit toilet as not having a toilet (and instead use a bucket,
bush, and so forth).

Overall, we estimated in Table 8 that a household’s access to elec-
tricity decreased when a mine became active. This finding is surprising
if we assume that electricity infrastructure is seldom destroyed, so that
with time, access has generally been increasing.13

Fig. A1 (Annex) further decomposes the effect, and panel Aa of the
figure confirms that the coefficient for electricity access is negative
using the treatment distance 20 km. However, with a treatment

Fig. 5. Diarrheal incidence among children under 5 by migration status.
Note: Fig. 5 shows the main treatment coefficients (active*mine) using the baseline estimation strategy (with DHS individual-level data; see Table 4 for more
information) in the top panel, but with different cutoffs (10 km, 20 km, 30 km, 40 km, and 50 km). *** p < 0.01, **p < 0.05, *p < 0.1. The bottom panel shows
the result using a spatial lag model that divided the plane into different treatment bins (0–10, 10–20, 20–30, 40–50) and compares them with farther away. Panel A
shows the result for nonmigrants, and panel B shows the result for migrants.

13 It is also possible that mining companies compete with households for
electricity if supply cannot be increased in the short run.
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distance of 10 km, the effect is marginally positive and insignificant. If
we use a treatment distance of 50 km, we no longer see a significant
effect. In panel Ab, the results are replicated using a spatial lag model,
meaning that we allow for nonlinear effects with distance. In reality, it
seems like the electricity rate is much higher before a mine (dashed
line) than with an active mine (the blue line). However, when the re-
sults are decomposed by migrant status in panel Ac of Fig. A1 (Annex)
we find that migrants are driving the lower electricity rate. In fact,
among nonmigrants, the electricity rate is higher 0–10 km from an
active mine, although it is slightly lower 10–20 km away.14

6.3. Distributional effects on wealth and inequality

Table 9 presents the effects of mining on asset wealth and on
asset wealth inequality. Wealth data are available in the form of a
wealth index, but only for the two last DHS surveys. Following

Fenske (2015) and Flatø and Kotsadam (2014), we calculate in-
equality by means of a Gini coefficient (recoding the wealth variable
to be positive only, and using the command fastgini15 in STATA). We
do this for both the cluster and district level. None of the effects of
mining are statistically significant, but they point to increased asset
wealth.

6.4. Bottom 40% of the population

To understand the welfare effects of the bottom 40 percent of the
population in the income scale, we split the sample according to the
wealth score provided by DHS. Given the data structure, which is
repeated cross-section, we cannot follow a particular household that
was identified as belonging to the bottom 40 percent in the initial
time period. Instead, we identify the bottom 40 percent in four
groups: far away, before mine or during mine, and close to mine,
before mine or during mine. The summary statistics for selected
main outcomes are presented in Table 10. As the table shows, the
bottom 40 percent in mining communities are more likely engaging
in agriculture than the bottom 40 percent elsewhere. This could il-
lustrate that agricultural workers are overrepresented among the
less well-off in mining communities. However, women in this group

Table 9
OLS estimates for wealth and inequality in the DHS individual-level analysis.

Wealth Gini

wealth index cluster level district level

active*mine 7,290 −0.004 0.004
(12,849) (0.013) (0.018)

mine 9,922 0.011 0.006
(8,676) (0.013) (0.016)

active 7,854 −0.006 0.034**
(9,016) (0.010) (0.017)

Observations 4,909 4,909 4,909
R-squared 0.613 0.227 0.548

Note: Robust standard errors clustered at the DHS cluster level in parentheses.
All regressions control for year and district fixed effects, urban dummy, age,
and years of education. Active is active status of mine in the survey year. ***
p < 0.01.
** p < 0.05.
* p < 0.1. OLS= ordinary least squares.

Table 10
Summary statistics for bottom 40% of women.

(1) (2) (3) (4)
far from a mine close to a mine

before during before during

not working 0.188 0.183 0.200 0.162
service & sales 0.340 0.203 0.179 0.222
professional 0.018 0.005 0.014 0.006
agriculture 0.362 0.530 0.490 0.539
manual labor 0.091 0.079 0.117 0.072
earning cash 0.876 0.855 0.879 0.901
work all year 0.852 0.859 0.879 0.838

Note: Column (1) is bottom 40% of sample at 20 to 100 km from a nonactive
mine.
Column (2) is bottom 40% of sample at 20 to 100 km from an active mine.
Column (3) is bottom 40% of sample within 20 km of a nonactive mine.
Column (4) is bottom 40% of sample within 20 km of an active mine.

Table 8
OLS estimates for ownership of assets and access to infrastructure.

water access household has

in minutes less 10min away electricity radio flush toilet pit toilet no toilet

active*mine −1.485 0.039 −0.095* 0.054 0.005 −0.015 0.010
(1.933) (0.048) (0.056) (0.036) (0.023) (0.033) (0.027)

mine −0.134 −0.013 0.099* 0.005 0.010 −0.012 0.002
(1.805) (0.039) (0.054) (0.029) (0.021) (0.029) (0.021)

Active 0.007 0.001 0.050** 0.034** −0.032 0.054** −0.023
(1.012) (0.026) (0.024) (0.017) (0.021) (0.026) (0.022)

Observations 9,790 9,790 12,226 12,216 12,227 12,227 12,227
R-squared 0.128 0.180 0.453 0.148 0.208 0.171 0.095
mean of dep var 0.407 14.84 0.565 0.652 0.151 0.732 11.6

Note: Robust standard errors clustered at the DHS cluster level in parentheses. All regressions control for year and district fixed effects, urban dummy, age, and years
of education. Active is active status of mine in the survey year. *** p < 0.01.
** p < 0.05.
* p < 0.1. OLS= ordinary least squares.

14 In panels Ba, Bb, and Bc of Appendix Fig. A1, we analyze access to radio.
We learn that access to radio is higher close to active mines, and that this seems
true according to both the first method (Ba), according to the spatial lag model
(Bb), and for both migrants and nonmigrants (Bc). The difference in effects
between electricity and radio access might be due to electricity being more
dependent on public infrastructure, and that electricity access may come with a
time lag to other development indicators such as employment and access to
radio, since a battery radio can be bought and used instantly, and easily moved.

15 Fastgini is a user-written command in STATA that helps calculate the gini
coefficient.
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still more often work in services than women did before in the same
communities.

Regression results comparing these four groups are presented in
panel B (urban) of Annex Table 3. The results suggest that women in the
bottom 40 percent are more likely agricultural workers in mining
communities than elsewhere, but also more often service sector
workers. They are less likely to work in manual labor, less likely to
work all year, but more likely to earn cash for work. This indicates,
possibly, that the economy becomes more reliant on cash as a mine
starts producing. It is possible that the difference from the main results
presented in Table 4 indicates that agricultural workers are over-
represented among the bottom 40 percent in mining communities.
However, given the issues associated with doing this analysis with re-
peated cross-section, we should be cautious in interpreting these re-
sults.

6.5. Heterogeneous results, sensitivity and intensity of mining

In panel B (urban) of Table A3 (Annex), we interact our treatment
variables (active*mine, mine, active) with an indicator variable for
whether the locality is urban. This allows us to pick up potential dif-
ferential effects across urban compared to rural localities. None of the

treatment effects are statistically significantly different between rural
and urban areas.16 In panel C, we have constructed a new treatment
variable #active*mines that counts the number of actively producing
mines within 20 km. Women are sampled within 20 km of one mine
(593 women), within 20 km of two mines (137 women), and within
20 km of three mines (64 women). The mean value of the independent
variable is 0.085 - that is, on average women are close to 0.085 mines.
Conditional on being close to a mine, the main independent variable is
1.33 - that is, a woman sampled close to a mine is close to 1.33 mines on
average. Panel C of Table A3 shows the effects on women’s labor market
participation. We note that the estimates are similar in direction as
before, where mines are positively associated with service and sales
jobs and with cash earnings, but negatively associated with agriculture
and professional jobs.

Panel D of Table A3 shows the results if we drop the part of the
sample that lives 20 km to 40 km away from a mine, and if we drop
those that are sampled two years before mine opening. The rationale for
this is to have a cleaner control group, since those that live just outside

Table 11
Using GLSS: Employment on extensive and intensive margin and wages.

(1) (2) (3) (4) (5) (6)
worked last year work 7 days hours worked per week agriculture service and sales miner

Panel A: Women
1. baseline
active*mine −0.067* −0.032 3.565 −0.075 0.074 0.025

(0.040) (0.038) (3.140) (0.064) (0.054) (0.016)
2. drop 20-40 km
active*mine −0.062 −0.039 3.849 −0.076 0.094* 0.026*

(0.040) (0.039) (3.359) (0.064) (0.057) (0.015)
3. drop 2 years before
active*mine −0.067* −0.031 3.565 −0.087 0.080 0.024

(0.040) (0.038) (3.140) (0.065) (0.055) (0.016)
4. mine FE
active*mine −0.067 −0.012 8.560* −0.084 0.104 0.025*

(0.051) (0.048) (5.125) (0.075) (0.065) (0.015)
5. mine clustering
active*mine −0.067* −0.032 3.565 −0.075 0.074 0.025

(0.032) (0.036) (3.521) (0.081) (0.080) (0.022)
Mean dep var. 0.727 0.673 40.39 42.32 0.391 0.005

Panel B: Men
1. baseline −0.086** −0.055 3.705 −0.058 −0.032 0.125***
active*mine (0.041) (0.039) (3.460) (0.066) (0.036) (0.043)
2. drop 20-40 km
active*mine −0.094** −0.062 3.893 −0.064 −0.031 0.126***

(0.042) (0.040) (3.842) (0.066) (0.038) (0.042)
3. drop 2 years before
active*mine −0.094** −0.062 3.708 −0.071 −0.026 0.125***

(0.041) (0.039) (3.459) (0.067) (0.036) (0.043)
4. mine FE
active*mine −0.123** −0.094* 8.233 −0.068 −0.049 0.113**

(0.057) (0.051) (5.425) (0.075) (0.044) (0.045)
5. mine clustering
active*mine −0.086*** −0.055** 3.705 −0.058 −0.032 0.125**

(0.025) (0.025) (2.898) (0.086) (0.032) (0.051)
Mean dep var 0.715 0.705 45.71 0.491 0.259 0.028

Note: The table uses GLSS data for Ghana for the survey years 1998, 2005, 2012. The sample is restricted to women and men aged 15–49. Robust standard errors
clustered at the village or neighborhood level in parentheses (except if otherwise stated). All regressions control for year and district fixed effects, urban dummy, age,
and years of education. Active is active status of mine in the survey year. The treatment distance is defined to 20 km. Rows 2 drop sample between 20–40 km of a
mine, and rows 3 drop sample that was surveyed two years before mine opening.
*** p < 0.01.
** p < 0.05.
* p < 0.1. FE=fixed effects.

16 Few of the other interaction coefficients are also statistically significant.
The interaction between urban*mine is significant, and women in urban lo-
calities with a future mine are 12 percentage points less likely to be working in
agriculture.
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our 20 km cutoff distance may also be “treated” by the mine, and the
investment phase of the mine that precedes initial production can
generate substantial employment. Overall, the effects do not change
much except making the cash earnings coefficient larger and more
significant. The increase in cash earning opportunities is estimated at
7.5 to 7.8 percentage points compared with 5.4 in the baseline esti-
mation.

6.6. Employment and wages using the GLSS

The DHS data do not provide detailed information regarding how
much an individual earns for work, or her wage rate, but the GLSS does
collect such data. First, we try to replicate the results estimated with the
DHS data. Panel A of Table 11 indicates that agriculture becomes less
important in mining communities for women (statistically insignif-
icant), who mainly shift into services and sales (statistically insignif-
icant, except for strategy 2). Men are more likely to work as miners
(statistically significant across all strategies).

To show the robustness of these results, we have tried three alter-
native strategies for each of the outcomes. In row 2, we drop the sample
that lives 20–40 km away, since they might be affected by the mine; in
row 3, we drop the sample that was surveyed two years prior to mine
opening; in row 4, we add closest mine fixed effects; and in row 5 we
cluster on the closest mine. The coefficients do not change much, even
if some magnitudes become bigger and the estimates more significant.
However, as in the results using DHS data, these estimates are not
precisely measured – few are statistically significant because the stan-
dard errors appear large.

Women are 7.4–10.4 percentage points more likely to work in ser-
vice or sales if they live close to a mine (depending on the estimations in
panel A columns 4, only one statistically significant estimate). Women
close to mines are 2.5–2.6 percentage points more likely to work in
mining (only one statistically significant estimate).

Men, on the other hand, (results shown in panel B of Table 12), are
significantly more likely to work in mining, and insignificantly less in
agriculture or service and sales. The likelihood that a man works in
mining increases by 11.3 to 12.6 percentage points, which is more than
a 400 percent increase in likelihood from the mean value which is
2.8%. For both men and women, the results are indicative of changes in
labor force participation on the extensive and intensive margin. Fewer
people work, as indicated by columns (1) and (2) (significant for men),
but those who work, work more hours than before (column 3, albeit
insignificant). It should be noted that the sample sizes are limited and
these estimates may suffer from lack of power.

Annex Fig. A2 presents the results graphically and shows the spatial
structure for a subset of the variables. The likelihood of a woman
working in services decreases with distance from mine, and log wages
are higher within 10 to 20 km of an active mine. Men are, intuitively,
more likely to work as miners if they reside close to an active mine, and
the correlation decreases with distance. Wages for men are also higher
close to active mines (panel D). Beyond 40 km, the estimated effects are
close to zero.

Table 12 shows that log annual wages are higher close to mines
(column 1), and that most of the increase is driven by the increase in
wage rates for women (column 2). Women, however, have lower wages
before the mine, and a smaller share of women earn wages. Globally, it
is considered that the historic expansion in service sector employment
(which in this context increased significantly within 10 km) has played
a pivotal role in reducing the gender wage and hour gap (Ngai and
Petrongolo, 2017).

Despite the possible gains in wages for wage earners, we note a
decrease in the regionally deflated total household expenditure (column
5), and a decrease in per capita expenditure on food and nonfood items
(column 4). The increase in wages but decrease in total expenditure can
possibly be explained by rising prices and wages in mining commu-
nities, where everyone has to pay the higher prices but only some (those

Table 12
Using GLSS: Household income and expenditure.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ln

wages
all

ln
wages
women

ln
wages
men

ln
pc
exp.

household level ln expenditure

total exp. food housing health education hh energy

active*mine 0.520** 0.694*** 0.391 −0.178* −0.126 −0.069 0.316** −0.168 0.297**
(0.226) (0.241) (0.238) (0.093) (0.089) (0.095) (0.139) (0.199) (0.119)

Observations 6,226 2,914 3,312 7,522 7,522 7,396 7,420 6,541 4,752
R-squared 0.121 0.128 0.118 0.959 0.964 0.963 0.933 0.837 0.950
controls
individual Y Y Y
hh head Y Y Y Y Y Y
hh size Y Y Y Y Y
district fe Y Y Y Y Y Y Y Y Y
year fe Y Y Y Y Y Y Y Y Y
deflated N N N Y Y N N N N
mean (ln) 15.30 15.29 15.31 13.04 14.19 13.42 10.88 10.74 9.52

Note: (1) Annual wages and salaries for individuals in all ages (nondeflated).
(2) Annual wages and salaries for women in all ages (nondeflated).
(3) Annual wages and salaries for men in all ages (nondeflated).
(4) Real per capita annual food and nonfood expenditure (regionally deflated).
(5) Total annual regionally adjusted household expenditure (local currency, regionally deflated).
(6) Total food expenditure (nondeflated).
(7) Total housing expenditure (nondeflated).
(8) Total health and education expenditure (nondeflated).
(9) Total household energy expenditure (gas and electricity) (nondeflated).
*** p < 0.01.
** p < 0.05.
* p < 0.1. All regressions control for year and district fixed effects, urban dummy, age, and years of education.
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who earn wages), benefit from a rise in wage rate.
Columns 6 through 9 of Table 12 look at nondeflated expenditure

measures for food, housing, health and education, and household en-
ergy.17 We confirm that total household expenditure on food decreases
(compared with the per capita deflated measure in column (4)), but find
that households spend more money on housing, transport, and com-
munication, and household energy, such as electricity and gas. The
electricity and gas expenditure is only for those who have any positive
expenditure on these, and we saw earlier that electricity access changes
with the mine. This confirms that, among those who spend anything on
electricity, they spend more on it in mining communities.

7. Robustness for district-level estimations

7.1. Using production levels

We continue by exploring the effects of mining intensity as proxied
by district-level production volumes. The estimation will be similar to
Eq.(2), but we replace the indicator variable for being an active mining
district with annual gold production in the district:= + + + +Y gold production g X_
idt

dt

d

t

it idt1 (4)
The measure of gold production is in 10 tons of gold produced, and

gold production_
dt

is either gold_year_district, which equals the total pro-
duction of all mines in a district in the different survey years, or
gold_period_district, which equals total production for the years before
the survey. For the 1993 survey, the period is 1990–93, for 1998 it is
1994–98, and so on.

Using production levels instead of an indicator of having any pro-
duction in the district has the advantage of capturing the intensity of
mining production. Since it is somewhat unclear when mining pro-
duction spills over to other types of employment, we use two measures
of mining production. Panel A of Table 13 shows the results of mining
production in the period before the survey, including the survey year,
on female employment, and we see that mining production leads to less

agricultural employment but more employment in services and sales, as
well as in professional work. Panel B shows that the effects are larger
but not as precisely estimated for the yearly measure. That they are
larger is not surprising, since a 10-ton increase one year is much more
than a 10-ton increase over a longer time period. The precision is also
probably lower since it is unclear what year the production spills over
to other activities. In any case, we see that the effects are similar across
these two specifications.18

7.2. Investigating spillovers

The districts are small, and some mines are located in border re-
gions. We thus expect there to be spillovers across district borders. For
example, a mine can change demand for labor, agricultural produce,
and services across the district border, and induce reallocation of work
across districts. We explore neighbor spillovers by estimating the fol-
lowing equation:

= + + + + +Y gold prod neighbor gold prod g X_ _ _
idt

dt dt

d

t

it idt1 2

(5)
That is, we add gold production for the mining districts to their

neighbors, and β2 measures the effects of gold production in these
districts, as well. That is, if β2 is statistically and economically sig-
nificant, it would imply that increased production in a neighboring
district has spillover effects on the district in question.

In Annex Table 4, we have added the gold production of the mining
areas to their neighbors and we estimate the spillover effects of mining
production in a district on employment in adjacent districts. As before,
panel A shows effects of increasing production in the previous period,
and panel B shows the effects of increased production in the survey
year. There is no evidence of spillovers in the sense that there is a si-
milar effect in neighboring districts. In fact, most coefficients point in
the opposite direction for mining and neighboring districts indicating, if
anything, a shift in employment from neighboring districts to the pro-
ducing ones.

Table 13
Effects of gold production at the district level on employment.
Panel A: Using production in the previous period

(1)
not working

(2)
agriculture

(3)
service or sales

(4)
professional

(5)
manual work

(6)
earns cash

(7)
works all year

gold period 0.003 −0.009** 0.003* 0.004*** −0.002 −0.001 0.008**
district (0.004) (0.004) (0.002) (0.002) (0.004) (0.002) (0.003)
observations 19,175 19,175 19,175 19,175 19,175 19,270 15,991
R-squared 0.207 0.327 0.127 0.137 0.037 0.213 0.278

PANEL B. Using production in the same year

(1)
not working

(2)
agriculture

(3)
service or sales

(4)
professional

(5)
manual work

(6)
earns cash

(7)
works all year

gold year 0.012 −0.033 0.020 0.019* −0.018 −0.010 0.041***
district (0.022) (0.025) (0.013) (0.011) (0.015) (0.009) (0.008)
observations 19,175 19,175 19,175 19,175 19,175 19,270 15,991
R-squared 0.207 0.327 0.128 0.137 0.037 0.213 0.278

Note: Robust standard errors clustered at the district level in parentheses. All regressions control for year and district fixed effects, urban dummy, age, and years of
education.
*** p < 0.01.
** p < 0.05.
* p < 0.1.

17 Additional results for recreation and transport and communication are
available upon request. The expenditure on the three measures increased in
mining communities.

18 The effects for infant health and infant mortality are also stronger when we
add production levels (results available upon request).

A. Benshaul-Tolonen, et al.

Remove space in black line



8. Conclusions

Ghana has a long history of gold production and has recently been
experiencing its third gold rush, during which annual gold production
skyrocketed. It was the first gold rush the country has experienced as an
independent nation, and it brings hope of improving the lives of its
citizens. Natural resource extraction is often argued to have detrimental
effects on countries, however, and the so-called natural resource curse
may imply that resource wealth is harmful to social development and
inclusive growth. We use rich geocoded data with information on
households and mining production over time to evaluate the gold boom
at the local and district levels in difference-in-differences analyses.

Men benefit from direct job creation within the mining sector, and
women seem to benefit from indirectly generated jobs in the service
sector (statistically significant within 10 km from a mine). Women are
more likely to earn cash and less likely to work in agriculture after mine
openings. We find similar results when we analyze the effects at the
district level and when we use production levels instead of openings
and closings of mines. We interpret this as there being additional effects
of being very close to a mine (within 20 km), beyond the effects from
being in a mining district. No spillovers into neighboring districts are
detected.

The results are in accordance with the results in Kotsadam and
Tolonen (2016), who find similar effects on occupation in mining
communities across the whole of Sub-Saharan Africa, and with Aragón
and Rud (2013), who find that agricultural productivity in Ghana is
reduced by mining production nearby. We find no statistically sig-
nificant results on wealth and inequality, although the results point
toward increases in both. The effects on infrastructure are ambiguous;
we cannot detect any better access to flush toilets and radios, and the
effects on electricity access are negative. Further decomposing these
effects, we learn that migrant households are less likely to have access
to electricity (compared with the change among migrant households
living further away), whereas nonmigrant households that never moved
might gain better access to electricity (compared with the change
among nonmigrant households living further away).

Applying the same strategies to analyze child health and birth
outcomes, we find both positive and negative effects of mining activity.
Mining activity appears to marginally reduce the anthropometric status
(short-term malnutrition) of children in mining districts, which could
point to less food security. These results are in sharp contrast to the
improvements in birth attendance and the decrease in infant mortality
observed in mining communities and mining districts. A child in a
mining district born after a mine has become active has had more
prenatal visits and is less likely to die as an infant. This result is similar
to what Benshaul-Tolonen (2019) finds for a larger sample of gold-
producing countries in Africa. Despite substantial reductions in diar-
rheal diseases, the analysis highlights that migrant children are more
likely to suffer from diarrheal diseases. The effects on the migrant
community should be interpreted with care, however, since it may be

that less-well-off people choose to migrate to mining communities and
that the mine activities do not make them any less or better off. In
addition, mine closure or downscaling could lead to deterioration in
local employment conditions and health care access, as has been ob-
served in Tanzania (Rhee et al., 2018).

The analysis shows that mining has created structural shifts in labor
markets, and that it has reduced infant mortality rates. However, along
with increased wage rates, we find that household level expenditure on
housing and energy increases. In addition, the migrant population may
have lower living standards with less electricity and a higher disease
burden among children. We have no information where the migrant
population moved from, and we cannot tell whether they have migrated
to the area to benefit from the industry, or whether they were part of a
relocation program due to the mining. One caveat is that these observed
differences among migrant households in mining communities and non-
mining communities could stem from untestable selection, as we do not
observe the migrant households before the migration. Regardless of the
motivation behind the migration decision, the policy recommendation
is to ensure policies are in place to ensure sustainable living conditions
in this group.

These district level findings should be placed in the context of
seminal work by Caselli and Michaels (2013) who found weak increases
in living standards in Brazilian municipalities after increase in off-shore
oil revenue accruing to municipalities, alongside increased illegal ac-
tivity by mayors (Caselli and Michaels, 2013). We estimate district level
effects on living standards (in mining districts, but no spillovers to
adjacent districts, in line with Mamo et al., 2019), but do not have
further information on public spending by sector to put these effects in
context to expected changes. Political outcomes such as clientelism,
corruption and reelection of local politicians that have been linked to
mining activities in other countries such as Peru (Maldonado, 2017)
and India (Asher and Novosad, 2018), such as clientelism, corruption
and reelection of local politicians were not analyzed within the context
of Ghana. We encourage future analysis along similar lines.

A few caveats should be noted. As the gold mining industry in
Ghana matures further, it will be important to determine the long
sustainability of these economic effects. This paper does not tease out
the effect of mine closure on local socio-economic conditions, an aspect
that warrants future focus. Moreover, lack of clearly estimated effects
both in the individual level and district level analysis could stem from
limited sample sizes. We encourage future analysis to use more rounds
of data to ensure consistent results. Lastly, for the health and employ-
ment effects that we observe, we cannot determine if they stem from
changes in the market-based economy, from corporate social respon-
sibility policies or public spending. To further understand the role that
mining companies’ social development policies, community participa-
tion in determining such policies, and the proximity to ASM have in
determining these outcomes warrant further detailed study, especially
as the industry is striving to gain social license to operate.
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Appendix A

.

Table A1
Variable definitions.
Characteristics

total children Total lifetime fertility
wealth Household wealth index score
non-migrant Respondent was born in the location and has never moved
migrant Any respondent who has ever moved in their life
urban The household lives in urban area
Woman’s occupation
not working Was not working in last 12 months
service & sales Works in services or sales
professional Works as a professional
agriculture Works in agriculture
manual labor Works in manual labor
earning cash Earns cash for work (0= not paid, in kind)
works all year Works all year (0= seasonally, occasionally)
Woman’s education
3 years education At least 3 years of education
no education No education
Child health
first 12 months Child died within 12 months from birth
diarrhea Child had diarrhea in last 2 weeks
cough Child had cough in last 2 weeks
fever Child had fever in last 2 weeks
Child anthropometrics
ht/age (st dev.) Height for age (standard deviation)
wt/age (st dev.) Weight for age (standard deviation)
wh/ht (st dev.) Weight for height (standard deviation)

Table A2
Summary statistics for children’s surveys.

(1) (2) (3) (4)
far from a mine close to a mine

before during before during

infant mortality
first 12 months 0.07 0.07 0.08 0.06
child health
diarrhea 0.17 0.17 0.13 0.17
cough 0.24 0.22 0.22 0.18
fever 0.20 0.21 0.24 0.20
child anthropometrics
ht/age (st dev.) −94.43 −104.88 −127.04 −115.76
wt/age (st dev.) −90.80 −100.16 −114.28 −103.48
wh/ht (st dev.) −40.29 −45.24 −47.816 −40.52
Sample size (child at birth) 3709 2204 661 314

Note: Column (1) is a sample at 20 to 100 km from a nonactive mine.
Column (2) is a sample at 20 to 100 km from an active mine.
Column (3) is a sample within 20 km of a nonactive mine.
Column (4) is a sample within 20 km of an active mine.
Infant mortality considers mine active status in birth year.
ht/age=height-to-age; wt/age=weight-to-age; wh/ht=weight to height; st. dev. = standard deviation.
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Table A3
Heterogeneous effects for bottom 40%, with urban locality interactions, intensity of mining, and timing of opening.

Woman’s occupation

agriculture service sales professional manual labor not working earns cash works all year

PANEL A: Bottom 40%
active*mine 0.033 0.029 −0.004 −0.078** 0.020 0.089*** −0.083*

(0.068) (0.048) (0.019) (0.038) (0.059) (0.034) (0.044)
Mine −0.009 0.044 0.006 0.018 −0.058 −0.065** 0.012

(0.057) (0.040) (0.010) (0.038) (0.046) (0.032) (0.036)
Active 0.068 −0.071* −0.008 0.014 −0.003 −0.052 −0.064*

(0.041) (0.038) (0.007) (0.025) (0.031) (0.048) (0.036)
Observations 2,536 2,536 2,536 2,536 2,082 2,083 2,536

PANEL B: Urban
active*mine −0.037 0.022 −0.013 0.019 0.009 0.062** −0.014

(0.044) (0.034) (0.010) (0.023) (0.025) (0.028) (0.034)
Mine −0.005 0.046 −0.002 −0.018 −0.022 −0.068*** −0.011

(0.033) (0.031) (0.008) (0.020) (0.022) (0.023) (0.026)
Active 0.007 −0.005 −0.008 0.012 −0.007 −0.046** 0.004

(0.024) (0.021) (0.005) (0.015) (0.015) (0.021) (0.022)
active*mine*urban 0.074 0.004 −0.022 −0.038 −0.018 −0.041 −0.002

(0.054) (0.058) (0.024) (0.037) (0.042) (0.052) (0.052)
active*urban 0.011 0.009 0.002 −0.006 −0.015 0.015 −0.019

(0.025) (0.025) (0.010) (0.017) (0.019) (0.021) (0.023)
mine*urban −0.121*** 0.052 0.006 0.040 0.024 −0.004 0.001

(0.043) (0.045) (0.017) (0.029) (0.033) (0.043) (0.045)
Urban −0.240*** 0.130*** 0.009 0.033** 0.068*** 0.013 0.026

(0.023) (0.023) (0.008) (0.016) (0.018) (0.018) (0.022)
Observations 12,176 12,176 12,176 12,176 12,176 9,262 7,085

PANEL C. Intensity −0.026 0.039* −0.020*** 0.005 0.001 0.038* −0.010
#active*mines

(0.028) (0.024) (0.007) (0.017) (0.020) (0.021) (0.021)
Mines −0.023 0.047 0.001 −0.009 −0.016 −0.063*** −0.012

(0.030) (0.028) (0.008) (0.018) (0.020) (0.021) (0.023)
Active 0.014 −0.001 −0.006 0.009 −0.016 −0.037** −0.007

(0.015) (0.016) (0.006) (0.011) (0.012) (0.015) (0.016)
Observations 12,176 12,176 12,176 12,176 12,176 9,262 7,085

PANEL D. Robustness
1. Drop 20-40 km
active*mine −0.040 0.020 −0.024** 0.017 0.026 0.078*** 0.023

(0.043) (0.030) (0.009) (0.022) (0.024) (0.028) (0.040)
2. Drop 2 years before
active*mines −0.013 0.025 −0.018* 0.002 0.003 0.075*** −0.028

(0.040) (0.030) (0.009) (0.021) (0.024) (0.028) (0.037)

Note: Robust standard errors clustered at the DHS cluster level in parentheses. All regressions control for year and district fixed effects, urban dummy, age, and years
of education.
*** p < 0.01.
** p < 0.05.
* p < 0.1. Panel A is limited to bottom 40% in the income distribution, panel B uses urban interaction, and panel C has a count variable for active mines. Panel D1

drops sample between 20 and 40 km away, and D2 drops individual samples two years before mine opening. 151 women are sampled within 20 km from an active
mine and in an urban area, and 246 women are sampled within 20 km from a mine regardless of its activity status and in an urban area.
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See Table A4.
.

Table A4
Spillovers on employment across districts.
Panel A: Using production in the previous period

(1) (2) (3) (4) (5) (6) (7)
VARIABLES not working agriculture service or sales professional manual work earns cash works all year

gold period 0.004 −0.009** 0.003* 0.004*** −0.002 0.001 0.006
District (0.004) (0.004) (0.002) (0.002) (0.004) (0.003) (0.004)
neighbor −0.004 0.005 −0.001 −0.002*** 0.001 0.008* −0.002
gold production (0.004) (0.004) (0.004) (0.001) (0.003) (0.004) (0.004)
observations 19,175 19,175 19,175 19,175 19,175 14,852 11,568
R-squared 0.207 0.327 0.127 0.137 0.037 0.146 0.255

Panel B: Using production in the same year

(1) (2) (3) (4) (5) (6) (7)
VARIABLES not working agriculture service or sales professional manual work earns cash works all year

gold period 0.012 −0.033 0.020 0.019* −0.018 −0.001 0.028
District (0.022) (0.024) (0.013) (0.011) (0.015) (0.015) (0.022)

neighbor −0.042** 0.036 0.007 −0.009** 0.008 0.020 0.013
gold production (0.017) (0.025) (0.021) (0.004) (0.010) (0.025) (0.019)
observations 19,175 19,175 19,175 19,175 19,175 14,852 11,568
R-squared 0.207 0.327 0.128 0.137 0.037 0.146 0.255

Note: Robust standard errors clustered at the district level in parentheses. All regressions control for year and district fixed effects, urban dummy, age, and years of
education.
*** p < 0.01.
** p < 0.05.
* p < 0.1.
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Fig. A1. Access to infrastructure: Varying the cutoff and spatial lag model.
Note: The figure shows the main treatment coefficients (active*mine) using the baseline estimation strategy (with DHS individual-level data; see Table 4 for more
information) in panel A, but with different distance cutoffs (10 km, 20 km, 30 km, 40 km, or 50 km). *** p < 0.01, **p < 0.05, *p < 0.1. Panels Ab, Ac, Bb, and Bc
show the result using spatial lag models, which divided the plane into different treatment bins (0–10, 10–20, 20–30, 40–50) and compares them with farther away
distances. Panel B shows the result for all individuals, and panel C shows the main treatment result (active mine) when the sample has been split into migrants and
nonmigrants.
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