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A B S T R A C T

Background: Culpability studies, a common study design in the cannabis crash risk literature, typically report
odds-ratios (OR) indicating the raised risks of a culpable accident. This parameter is of unclear policy relevance,
and is frequently misinterpreted as an estimate of the increased crash risk, a practice that introduces a sub-
stantial “interpretational bias”.

Methods: A Bayesian statistical model for culpability study counts is developed to provide inference for both
culpable and total crash risks, with a hierarchical effect specification to allow for meta-analysis across studies
with potentially heterogeneous risk parameter values. The model is assessed in a bootstrap study and applied to
data from 13 published culpability studies.

Results: The model outperforms the culpability OR in bootstrap analyses. Used on actual study data, the
average increase in crash risk is estimated at 1.28 (1.16–1.40). The pooled increased risk of a culpable crash is
estimated as 1.42 (95% credibility interval 1.11–1.75), which is similar to pooled estimates using traditional ORs
(1.46, 95% CI: 1.24–1.72). The attributable risk fraction of cannabis impaired driving is estimated to lie below
2% for all but two of the included studies.

Conclusions: Culpability ORs exaggerate risk increases and parameter uncertainty when misinterpreted as
total crash ORs. The increased crash risk associated with THC-positive drivers in culpability studies is low.

1. Introduction

The increased crash risks associated with recent cannabis use are
receiving increasing scrutiny as “recreational cannabis” is being lega-
lized in Canada and across US states.

Culpability studies are a commonly used observational study design
for assessing traffic safety (Kim and Mooney, 2016), and use an odds-
ratio to assess whether culpable crashes are associated with driver
characteristics in a sample of crash involved drivers. The studies require
data on culpability status, which is based on the assessment of trained
individuals applying pre-specified criteria to information on the cir-
cumstances of the crash. The scorer is (ideally) blinded to the type of
driver scored (i.e. positive/negative status). Under the identifying as-
sumption that non-culpable drivers can be considered a random sample of
the driver population on the road at the time of the crash, the culpability
odds ratio (OR) can be interpreted as the relative odds of culpable cra-
shes for positive relative to negative drivers. If confounding is balanced
across driver types, the culpability OR can be interpreted as a causal
parameter that expresses the impairment-attributable risk increase for
culpable crashes. This follows since the driver types under this assump-
tion will have identical average crash risks in the absence of impairment.

The commonly noted drawbacks of the culpability design focus on
the quality of the responsibility assessment and the strong assumption
that nonculpable crashes can be considered a random sample from the
driver population at the time of a crash (Kim and Mooney, 2016). Largely
unnoticed is the interpretational bias caused by researchers treating
culpability ORs as equivalent to crash ORs. Since culpability ORs relates
to culpable crashes only, the change in total crash risk will necessarily be
smaller. The magnitude of the bias can be considerable (see numerical
illustration in supporting materials), and the misinterpretation appears
widespread in the cannabis crash risk literature: a high profile meta-
analysis in the British Medical Journal pooled estimates of culpability
and crash OR as though they were exchangeable (Asbridge et al., 2012)
while a study in the BMJ used culpability ORs to calculate the attribu-
table risk fraction (Laumon et al., 2005). Despite the issue being high-
lighted in a later meta-review (Rogeberg and Elvik, 2016a), researchers
both responding to (Gjerde and Mørland, 2016) and referring to (Martin
et al., 2017) this article persisted in the misinterpretation. The issue
appears to be poorly understood, and improved inference models are
needed to estimate the increased crash risk from culpability study counts.

A Bayesian model, defined in terms of intuitive structural para-
meters, is presented that allows for inference regarding both crash risk
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and culpable crash risk increases. The model avoids the known upwards
bias in odds-ratios computed from small sample and sparse count data
(Greenland, 2000; Greenland and Schwartzbaum, 2000; Nemes et al.,
2009), as well as the need for a log-normal approximation to compute
confidence intervals. To allow for meta-analysis, the model is for-
mulated with a hierarchical culpability risk parameter, improving in-
ference by reducing the impact of random sampling variation on
parameter estimates.

The performance of the inference model is demonstrated in a
bootstrap exercise using realistic sample sizes and data drawn from 13
published culpability studies on the risk associated with cannabis-po-
sitive drivers.

Having confirmed the performance of the Bayesian inference model
on bootstrapped studies, crash risk increases are estimated on data from
13 identified culpability studies with counts from no-alcohol sub-
samples. Estimates of overall crash risk increase are compared to the
culpability odds identified using traditional culpability ORs to illustrate
the magnitude of the interpretational bias in the literature. Finally, the
model is used to infer the attributable risk fraction, which states the
percentage change in total crashes that would follow from an elim-
ination of cannabis-positive driving in a road population.

It is important to note that the current meta-analysis has a scope
limited to culpability studies only, while a full assessment of the crash
risks associated with cannabis would also need to assess the evidence
from other designs, e.g., case control studies and experimental driving
studies. All model code is written in Stan, a programming language for
probabilistic modelling that can be estimated using open-source soft-
ware in R and Python on a variety of computing platforms. The model
code is included in the supporting online materials.

2. Data and methods

2.1. Data

Count data come from 13 published culpability studies of the in-
creased average culpable crash risk associated with cannabis positive
drivers. The data consists of no-alcohol counts from all culpability
studies identified in a recently published systematic meta-analysis
(Rogeberg and Elvik, 2016a), supplemented with counts from three
culpability studies published since 2016 (Martin et al., 2017; Li et al.,
2017; Romano et al., 2017). Some of the data counts are directly re-
ported in the studies, some can be inferred from the reported data and
results, and some was provided directly from the researchers involved.
The sources and details are provided in the supplementary information.

From each included study, we use the four counts used by the odds-
ratio estimator: The number of culpable and non-culpable individuals
who were respectively positive (THC levels above the study’s threshold
level) and negative. The studies and the data used, along with de-
scriptive information (country, crash type), are shown in Table 1.

2.2. Inference models

The standard approach to analyzing culpability studies involves the
use of an odds-ratio . Using +/− in the superscript to distinguish
between positive and negative drivers, this estimator can be stated as

=
+ +culp nonculp

culp nonculp
/
/

where culp and nonculp refers to counts of drivers assessed as culpable
and nonculpable.

In large sample studies without sparse cells, this estimator will be
approximately lognormally distributed with standard errors

= + + ++ +se
culp culp nonculp nonculp

1 1 1 1

This is commonly used to calculate confidence intervals irrespective
of sample size, though the OR estimator has a known upwards bias in
small sample sparse count samples (Greenland, 2000; Greenland and
Schwartzbaum, 2000; Nemes et al., 2009).

More fundamentally, the problem with is the fact that it measures
the increased risk of culpable crashes rather than of all crashes – the risk
increase parameter that is typically of interest.

To provide inference regarding overall crash risk increases based on
culpability count data we formulate a statistical model in terms of three
underlying parameters:

1 The true share of drivers on the road who are positive and negative
on some substance or risk factor (ideally in a sample conditioned on
scoring negative on other substances). We denote the positive share
se (for exposed).

2 The baseline culpability probability amongst negative drivers (de-
noted sc), and

3 the relative risk of having a culpable accident given that you are
positive (denoted ). This is the parameter estimated by a culp-
ability OR.

Using these parameters we can express the expected relative share
of drivers in each of the four cells, and model the data as a multinomial
draw with sampling probabilities proportional to these (Table 2). In-
tuitively, the table states that the positive share of nonculpable drivers
equals the positive share in the driver population (due to the identifying

Table 1
Culpability studies included.

Study Country Crash type Culp+ Culp- Nonculp+ Nonculp-

Terhune (1982) USA Injury 4 94 4 157
Williams et al. (1985) USA Fatal 10 55 9 23
Terhune et al. (1992) USA Fatal 11 541 8 258
Longo et al. (2000) Australia Injury 21 996 23 891
Lowenstein and Koziol-McLain (2001) USA Injury 4 114 6 126
Drummer et al. (2004) Australia Fatal 51 1214 5 376
Laumon et al. (2005) France Fatal 319 4386 131 3585
Soderstrom et al. (2005) USA Injury 126 980 59 540
Bédard et al. (2007) USA Fatal 1106 18405 541 12491
Poulsen et al. (2014) New Zealand Fatal 74 403 18 128
Li et al. (2017) USA Fatal 910 9663 716 12595

France Fatal 122 1686 44 1410
Romano et al. (2017) USA Fatal 64 1398 37 1085

Table 2
Underlying population shares expressed using model parameters.

Negative Positive

Culpable ×s s(1 )e c × ×s se c
Nonculpable ×s s(1 ) (1 )e c ×s s(1 )e c
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assumption); among negative drivers the culpable share is equal to the
baseline culpability share; amongst culpable positive drivers, the
numbers are altered by the relative risk parameter . When differs
from one, the cell expressions will fail to sum to 1, requiring a nor-
malization to express the probabilities.

The benefit of this approach is that it allows for statistical inference
on any magnitude of interest that can be expressed in terms of the
structural parameters. The total increase in crashes for the positive
drivers due to is found by summing the two positive driver cells (an
expression we can simplify to × × +s s s( 1) e c e) and dividing this
by the sum they would have in the absence of impairing effects (which
simplifies to se). This gives us the expression for the relative crash risk
increase of positive drivers (for culpable and nonculpable crashes) as

+ × s(1 ( 1) )c .
Similarly, we can get an expression for the attributable risk factor,

the percentage change to the total crash rate that would occur under a
causal interpretation of if no drivers were positive. The four cells
would then sum to 1, while they now sum to + × ×s s1 ( 1) e c. The
impairment attributable share of crashes as a share of all crashes can
therefore be written as

× ×
+ × ×

s s
s s

( 1)
1 ( 1)

e c

e c

To estimate the model we use Bayesian maximum likelihood and the
probabilistic programming language Stan (Carpenter et al., 2016; Stan
Development Team, 2016) with weakly informative priors on the under-
lying parameters. Estimation conditions on observed study counts, and al-
lows us to draw a representative sample of parameter values from the
posterior distribution of the model. These draws tell us how the “beliefs”
embedded in the prior are optimally updated in light of the observed data.
To perform inference on a parameter or a combination of parameters, we
simply assess the distribution of this parameter (or parameter combination)
across the posterior samples. This marginalizes across the uncertainty we
have regarding the true values of all other parameters, giving us the prob-
ability that the parameter will take various values conditional on the im-
posed model structure, the assigned priors, and the observed data.

The priors for the share of positive drivers on the road and for the
culpable share of the negative drivers are both specified using the beta-
distribution. The increased culpability risk of positive drivers is given a
lognormal prior. The specific parameter values used will depend on
context, and we choose values that weakly reflect the typically low
prevalence of cannabis positive drivers on the road and the typically
high culpability shares found for drug negative drivers, while allowing
for large but not extreme and implausible risk increases (Fig. 1).

Note that the prevalence prior is on a sample conditioned on scoring
negative on alcohol and other drugs. This conditional prevalence will
necessarily be higher than the actual on-the-road prevalence in the total
driver population. If, e.g., 6% of drivers score positive for cannabis-use
alone and 40% score positive on alcohol or other drugs (with or without
cannabis), then the conditional prevalence would be 0.06/0.6 = 10%.
For this reason, we let the prior assign non-negligible probability to
prevalence values up to about 30%.

2.3. Assessing methods

Performance of the inference model is assessed using a bootstrap
methodology: The counts from each of the 13 culpability studies constitutes
a bootstrap source sample, from which we draw 500 new samples of size
identical to the original study. Each sample is randomly drawn with re-
placement from the study’s observed counts, and both estimation ap-
proaches are applied to each of the bootstrap samples. Since the traditional
culpability OR is undefined when one of the cell counts is 0, bootstrap
samples with zero counts in any cells are discarded.

Under the identifying assumption of culpability studies that non-
culpable drivers are a random draw from the driver population, we can
view the nonculpable counts in the bootstrap source sample as re-
presentative of the relevant driver population. This defines a “true”
relative risk of all car crashes for positive drivers equal to

= + +
+

+ +culp nonculp nonculp
culp nonculp nonculp

( )/
( )/

For each of the studies, we then assess:

Fig. 1. Prior distributions for model parameters.
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• Sampling distribution of the point estimate. For each of the si-
mulated samples we extract the median under the posterior from the
Bayesian model. We display the distribution of these point estimates
across the bootstrap samples along with a vertical line indicating the
average estimate across the samples and the true relative risk. For
comparison, we include the distribution of culpability ORs esti-
mated using the traditional odds-ratio estimator.

• Sampling distribution of the confidence/credibility interval
widths. For each of the simulated samples we calculate the width,
measured in risk increase percentage points, of a 95% Bayesian
credibility interval. Conditional on the model and the prior, this
interval should have a 95% probability of including the true para-
meter value. For comparison we also plot the width distribution of
the 95% confidence intervals of the traditional culpability OR esti-
mator. These express a range that should cover the true parameter
value 95% of the time in repeatedly sampled data from the same
population.

• Calibration test of confidence intervals. For each of the simulated
samples we calculate a set of credibility intervals for different
probabilities (5%, 10%, …, 95%) and assess whether each of these
contains the true parameter value. This allows us to draw a cali-
bration curve that shows the percentage of bootstrap samples in
which the different credibility intervals actually contained the true
parameter value. We compare this to the analogous calibration
curve for the confidence intervals of the standard culpability OR.
This allows us to assess whether a p% confidence or credibility in-
terval typically contains the true parameter value in p% of the
bootstrapped samples.

2.4. Meta-analytic approaches

Sampling variation generates substantial variation in effect esti-
mates when samples are small, but the underlying (true) effect sizes
that are estimated may themselves differ when data are drawn from
different populations. In studies of crash risk increase from cannabis,
for instance, the actual effect in different study populations would differ
across studies if:

• The impairing effects of THC increases the risk of crashes in specific
types of road or traffic conditions, and these are more common in
some of the traffic systems sampled.

• Individuals driving with THC in their blood differ in their baseline
(unimpaired) crash risk across studies due to selection into use and
into impaired driving, and this confounding is stronger in some of
the driver populations sampled.

• The average level of THC in the THC-positive driver population
differs across regions and periods, leading to different average
doses, impairment and risk.

• The scoring used to determine culpability differs across studies,
making the non-culpable drivers more representative of the under-
lying driver population in some studies than others.

While the baseline model performs independent inference on each
study, we extend the model with a hierarchical effect specification to esti-
mate the distribution of the culpability risk increase parameter across studies.
We assume a prior for the across-study heterogeneity that implies that 95%
of studies will have effect sizes that range from half to double the mean
culpability risk increase. The hierarchical effect priors (and the posterior
after estimation) are displayed in the results section below.

To test this meta-analytic model’s performance, we estimate it using
10 bootleg samples drawn from two bootleg source samples with sparse
counts – one where the implied risk increase in the bootstrap source
data is low (Williams et al., 1985) and one where the implied risk in-
crease is high (Drummer et al., 2004). We compare the statistical in-
ference possible when each of the 10 bootstrap samples from a study is
assessed separately (using the baseline model) and collectively (using

the hierarchical model), comparing both to the true parameter values
implied by each of the two bootstrap source samples.

2.5. Crash risk inference – meta-analysis

While the assessment of the inference model compared estimates from
resampled study counts to the “true” effect as defined by the source data, we
now view the source data as being itself a random draw from some un-
observed underlying population with unknown risk parameters.

We assess the risks associated with cannabis in culpability study
data by four methods:

1. Single study estimates

a The baseline Bayesian model, which estimates each study in isola-
tion from the others.

b The traditional culpability OR

2. Meta-analysis

a The hierarchical Bayesian model.
b Random Effects Meta-analysis of the traditional culpability odds-

ratios and their associated CIs.

The results from the Random Effects Meta-analysis is presented as a
forest plot with a pooled effect estimate and compared to the hierarchical
effect estimates for the culpability risk increase from the Bayesian model. To
assess the magnitude of the interpretational bias that comes from mis-
interpreting culpability ORs as “all crash” ORs, we compare the Bayesian
estimates of culpability risk to that of all crash. Finally, we present results
for the attributable risk fraction based on the hierarchical Bayesian model to
assess the overall effect of cannabis impairment on road traffic crashes.

The hierarchical specification allows for study level differences in
the underlying risk parameter, though it is worth noting that this var-
iation may itself be related to study level factors. Crash severity, ex-
posure measure (e.g., blood, saliva, urine, self-report) and threshold,
country, time period etc. may all systematically affect the size (and
interpretation) of the underlying risk parameter. In principle, this can
be assessed by adding further hierarchical effects, representing e.g.,
country or time-period differences, to the model. As these factors op-
erate at the study level, however, the number of “observations” is
substantially reduced, increasing the risk of data mining and specifi-
cation search unless a principled approach is followed.

2.6. Software

All analyses were done within RStudio, running R (version 3.4.2) on
a Macintosh computer. Culpability ORs and confidence intervals were
calculated using standard odds ratios and the lognormal approximation.
The meta-analysis was performed using the DerSimonian-Laird esti-
mator of the Metafor R-package (Viechtbauer et al., 2010). The Baye-
sian models were specified in the Stan programming language and es-
timated using Hamiltonian Monte Carlo and the NUTS (No U-Turn)
sampler using the Rstan package (version 2.16.2). Three chains with
10,000 iterations each were used for each model estimation, of which
the first 3000 samples from each chain tune the model estimation and
were discarded from the posterior draws used for inference. Full model
code for the inference model is available in the supporting materials.

Plots were made using the ggplot2 R-package (Wickham, 2016) and
the ggridges add-on (version 0.4.1) from the CRAN repository.

3. Results – model assessment

3.1. Assessing the baseline model

The estimated increase in the risk of a culpable crash is largely the
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same whether we use the Bayesian model or culpability ORs: Averaged
across multiple bootstrapped samples the point estimate from both
methods average close to the true value, confidence/credibility inter-
vals are similar, and the confidence/credibility intervals are well cali-
brated (figures S1-S3 in the supporting materials). The priors of the
Bayesian model help avoid some of the most extreme and implausible
point estimates suggested by the culpability OR, but the differences are
minor. For one small sample study with an extreme share of positive
drivers amongst the nonculpable (Williams et al., 1985), the nonculp-
able counts are insufficient to shift the prior, resulting in exaggerated
risk increase estimates. In this study, the road share parameter of the
bootstrap source sample is 28%, but this is based on 9 positive and 23
negative nonculpable drivers.

Turning to the overall crash risk increase and the interpretational
bias, we next compare the estimated increase in total car crash risk to
the traditional culpability OR. Comparing the distribution of point es-
timates across resampled study counts, the culpability ORs show sub-
stantially more variation and are typically centered away from the true
crash risk increase, illustrating the interpretational bias issue (Fig. 2).
The issue is especially prominent for the large sample studies, where the
average culpability OR is about twice the underlying total crash risk
increase. The Bayesian model recovers the underlying risk parameter
both in cases where the risk increase is low (as in Longo et al. (2000))
and high (as in Martin et al (2017)).The exception is Williams et al.
(1985), where the sample size used (n = 97) is very small and contains

insufficient information to shift the prior sufficiently towards the
parameter value implied by the bootstrap source data.

Turning to the inferential uncertainty, the 95% confidence intervals
are substantially larger than the 95% credibility intervals of the
Bayesian model (Fig. 3). The Bayesian credibility intervals for the crash
increase are well-calibrated except for the Williams study with its small
sample, while the confidence intervals of the culpability ORs fail to
encompass the true risk increase value in 4 of the larger sample studies
(Fig. 4).

3.2. Assessing the hierarchical model

To assess the hierarchical (meta-analytic) Bayesian model we use
two studies with sparse counts, Drummer et al. (2004) and Williams
et al. (1985). These bootstrap source samples implied some of the most
extreme risk parameter values, with implied relative risks of all crashes
at 2.65 and 0.62 respectively. We now draw 10 samples from each of
these studies, and use the hierarchical and baseline models on each set
of 10 samples. The hierarchical specification of the culpability risk
parameter improves inference by pooling across studies, as it correctly
infers that there is little evidence in the data that the underlying risks
differ across the samples (Fig. 5). Note that the plotted distributions
now show statistical uncertainty, while earlier plots showed the dis-
tribution of point estimates and uncertainty intervals across multiple
bootleg replications.

Fig. 2. Culpability and crash OR - distribution of point estimates. Results from 500 bootstrapped samples drawn from – and of equal size to – the original data.
Culpability ORs and Bayesian crash ORs are assessed relative to the true crash OR in the bootstrapped data.
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Note also that the partially pooled relative risk inference contains
the true risk parameter, although the median value (which we used as a
point estimate when testing the baseline model) is above the true value
for the low-risk Williams samples and below for the high-risk Drummer
sample. This reflects the prior for the road prevalence, combined with
the sparse counts identifying the extreme values of this parameter in the
data. Since we do not impose a hierarchical specification on the road
share, the typically sparse counts identifying this parameter in the
samples is insufficient to credibly shift the prior all the way towards the
true value. We can see this by repeating the exercise with two other
studies where the sparse counts issue for the road share is less extreme:
relative risk estimates are now centered directly on the true effect,
while the non-pooling Baseline model suggests an excessive degree of
across-study effect heterogeneity (see figure S4 in the supporting info).

4. Results - assessing the average crash risk of cannabis

Independent inference on each of the 13 sets of study counts, using
culpability ORs and the Bayesian baseline model, finds that the Bayesian
estimates of total crash increase tend to be both lower and more precisely
estimated than indicated by (misinterpreted) culpability ORs (Fig. 6), with
particularly large discrepancies in large sample studies.

Pooling the evidence across studies using a random-effects meta-
analysis of culpability odds-ratios, the 13 data samples give a pooled
odds ratio of 1.46 (95% CI: 1.24–1.72) (see forest plot in the supporting

information, S5), and a forest plot fails to suggest positive publication
bias (supporting information, figure S6). The random-effects pooled
effect is essentially the same as the pooled culpability risk increase in
the Bayesian meta-analytic model, which averages at 1.42 (95% cred-
ibility interval 1.11–1.75).

Comparing the study level estimates of total and culpable crash risk
change from the meta-analytic Bayesian model, we see how changes to total
crash risk are systematically smaller and more precisely estimated (Table 3).
The importance of the interpretational bias can be seen in Table 3 by noting
that the estimated average total crash risk increase at the study level is
below the lower bound of the random effects culpability OR meta-analytic
pooled effect for 8 of the 13 studies. Taking the average crash risk across the
13 study samples for each of the posterior draws, we can extract the mean
and the 2.5% and 97.5% quantile values to characterize the average crash
risk increase overall, giving a point estimate of 1.28 (1.16–1.40).

Relative to the baseline Bayesian model, the hierarchical specification
reduces the dispersion in estimates across studies (Supporting materials,
figure S7). In particular, the model suggests that sampling variability is the
most plausible explanation for the substantial risk-reducing culpability RRs
found using data from Williams et al. (1985), Terhune et al. (1992), Longo
et al. (2000) and Lowenstein et al. (2001), as well as the large risk increase
estimated from the data of Drummer et al. (2004).

Finally, the posterior distribution for the attributable risk fraction,
which gives the percentage change in car crashes involving no-alcohol
drivers that would be expected if all cannabis use ceased (Fig. 7), finds

Fig. 3. Width distribution of confidence intervals and credibility intervals. Results from 500 bootstrapped samples drawn from – and of equal size to – the original
data.
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that the mean attributable risk fraction evaluated across the posterior is
below 2% for all but two studies. These results can be compared to
reported attributable risk fractions of 2.5% (Laumon et al., 2005) and
4.2% (Martin et al., 2017) erroneously estimated using culpability ORs.
Importantly, any inference on attributable risk fractions assumes that a
causal interpretation is appropriate, an assumption we return to in the
next section.

5. Discussion

A Bayesian model specified from intuitive structural parameters was
shown to provide credible inference regarding the overall crash risk
implied by culpability study data. Applied on data from 13 published
culpability studies, average crash risk increases of cannabis-positive
drivers with a Bayesian credibility interval are substantially lower and
more precisely estimated than the culpability odds based on a tradi-
tional odds-ratio estimator. Interpretational bias has led to an ex-
aggerated impression of the crash risks associated with cannabis in data
from culpability crash studies.

While the Bayesian model improves the quality of inference from
these data, the strength of the results can be no stronger than the
strength of the underlying assumptions and the quality of the individual
study data. These limitations are shared with the culpability OR esti-
mator. Specifically, the identification of the increased crash risk hinges
on the assumption that nonculpable crash-involved drivers can be

viewed as a random sample from the underlying driver population, and
the causal interpretation of the risk parameter further depends on the
assumption that confounding is balanced across positive and negative
drivers. This latter assumption is important, in that the magnitudes of
the estimated risk increase is sufficiently small that we cannot rule out
residual confounding. Adjustment for confounding was found to have a
substantial impact on estimates by Rogeberg and Elvik (2016a, b), who
document that the use of unadjusted estimates largely explained the
high risks of cannabis impaired driving reported in earlier meta-ana-
lyses. Confounding is further indicated by the known higher prevalence
of cannabis-impaired driving in groups with higher baseline risks such
as young men and individuals with unsafe driving practices and atti-
tudes (Fergusson and Horwood, 2001; Richer and Bergeron, 2009;
Bergeron et al., 2014; Bergeron and Paquette, 2014).

The use of prior distributions for the parameters and a Bayesian
modeling framework may be unusual for researchers used to working
with “off-the-shelf” frequentist estimators like the culpability odds-
ratio. A common concern is that priors introduce an element of arbi-
trary subjectivity in the analysis. While it is certainly possible to impose
overly strong priors that predetermine the results of an analysis, how-
ever, the point of the priors is rather to reduce excessive sensitivity to
sampling variation by statistically encoding knowledge about the
plausibility of different regions of parameter space, thus improving the
robustness of inference. As shown by the bootstrap analysis, the
Bayesian inference model largely coincides with the culpability OR

Fig. 4. Calibration test of confidence/uncertainty intervals. Results from 500 bootstrapped samples drawn from – and of equal size to – the original data. Culpability
and crash ORs are here assessed relative to the true crash OR in the bootstrapped data.
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Fig. 5. The posterior distribution of inferred crash ORs – comparison of baseline and hierarchical model. Each of the two panels show the posterior distribution of
estimates from two models analysing 10 resampled sets of counts from a low-powered culpability study. One model (baseline) analyses the data from each of the 10
samples independently, the other users a hierarchical effect specification to pool studies.

Fig. 6. Culpability and Crash risks compared –
The figure shows point estimates with 95%
crediblity intervals for culpability and crash
risk increases associated with THC-positive
drivers, as well as the percentage point differ-
ence in risk between the two parameters, cor-
responding to the interpretational bias re-
sulting from viewing culpability ORs as
interchangeable with crash ORs.
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when used to assess the relative risk increase for culpable crashes
(figure S1 in the supporting materials), and the estimated mean of the
culpability risk increases in the hierarchical model largely agrees with a
random effect meta-regression on culpability ORs. This shows that the
main benefit of the Bayesian approach is that it provides inference re-
garding total crash increases in addition to culpable crash risk in-
creases, as well as its increased stability and precision in small count
samples. Conversely, we could also ask why the scientific community
should take confidence intervals for culpability ORs seriously when
these are based on small-sample studies whose confidence intervals
include ORs of 40 or more that are clearly ruled out by the evidence
base as a whole. The goal of epidemiological traffic crash research is to
develop a credible evidence base that informs us about the actual risks
associated with different substances and traits, and the Bayesian ap-
proach to inferring crash risk increases appears to do this in a better
way than the culpability odds-ratio estimator.

6. Conclusion

Culpability studies typically report the raised odds of culpable cra-
shes associated with some factor, but these estimates provide in-
formation on a risk parameter with an unintuitive interpretation and
unclear policy relevance, often leading to interpretational bias as re-
searchers treat culpability ORs as direct estimates of crash ORs. A
Bayesian model provides accurate inference on the relative risks of a
crash, the parameter of interest to researchers and policy makers.
Tested using a bootstrap procedure, the model accurately recovers the
underlying crash risk increase and produces well-calibrated credibility
intervals, and inference can be further improved by using a hierarchical
effect specification to capture across-study heterogeneity in the culp-
ability risk parameter.

The main contribution of this study is to explain, document and
make available an improved inference model for use in future culp-
ability studies, allowing researchers to assess and report estimates of

Table 3
Crash and culpability relative risk estimates from hierarchical Bayesian model. The table shows the average value of the crash risk and
culpability relative risk across the posterior distribution, along with the bounds of the 95% credibility interval.

Study Crash relative risk Culpability relative risk

Terhune (1982) (N = 259) 1.18 (0.91-1.56) 1.48 (0.78-2.46)
Williams et al. (1985) (N = 97) 1.15 (0.74-1.59) 1.23 (0.61-1.92)
Terhune et al. (1992) (N = 818) 1.13 (0.73-1.58) 1.2 (0.6-1.87)
Longo et al. (2000) (N = 1931) 1.08 (0.82-1.36) 1.15 (0.66-1.69)
Lowenstein Kozial-Mclain (2001) (N = 250) 1.14 (0.83-1.51) 1.3 (0.65-2.06)
Drummer et al. (2004) (N = 1646) 1.62 (1.12-2.56) 1.82 (1.15-3.04)
Laumon et al. (2005) (N = 8421) 1.49 (1.3-1.72) 1.89 (1.54-2.31)
Soderstrom et al. (2005) (N = 1705) 1.18 (0.96-1.43) 1.28 (0.94-1.67)
Bédard et al. (2007) (N = 32,543) 1.23 (1.15-1.32) 1.39 (1.25-1.55)
Poulsen et al. (2014) (N = 623) 1.33 (0.96-1.8) 1.44 (0.94-2.07)
Li et al (2017) (N = 23,884) 1.28 (1.21-1.35) 1.65 (1.49-1.82)
Martin et al (2017) (N = 3262) 1.54 (1.25-1.95) 1.98 (1.46-2.74)
Romano et al (2017) (N = 2584) 1.22 (0.99-1.5) 1.39 (0.98-1.89)

Fig. 7. Posterior distribution of the attributable risk fraction of cannabis – estimated using the hierarchical specification of the Bayesian model.
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total crash risk from culpability study counts, and reducing the future
risk of interpretational bias.

As a whole, the evidence from the 13 sets of no-alcohol culpability study
counts imply that the raised crash risks associated with cannabis are low on
average for drivers with THC-values above typical study thresholds. As with
culpability odds-ratios the credibility of the reported associations rest on the
assumption that nonculpable drivers can be viewed as a random sample
from the underlying driver population, while the causal interpretation of
estimates as impairment-induced risk increases hinge on the (likely false)
assumption that confounding is balanced across positive and negative dri-
vers. Comparing the estimates to those reported using traditional meta-
analytic methods, the average crash risk increase of 1.28 (1.16–1.40) is
above that reported for culpability study estimates adjusting for individual
level factors (age, sex, etc.) (Rogeberg et al., 2018)1. This is consistent with
residual confounding of the kind individual level controls are meant to re-
duce. More interesting, however, the pooled estimate from 15 case control
studies is reported as 1.82 (1.19, 2.79), suggesting that case control studies
adjusting for individual level confounders indicate higher risks than culpability
studies without confounder controls. Understanding this discrepancy should
be a priority for future research. The estimated ranges overlap, so the dif-
ference could be random and due to (unsystematic) sampling variation. It
could also, however, indicate that culpability studies systematically under-
estimate risk increases, for instance by misclassifying culpable, intoxicated
drivers as nonculpable. Conversely, it could indicate that case control stu-
dies systematically exaggerate risk increases, for instance by failing to ac-
count for the likely systematically reduced participation rates of intoxicated
drivers asked to participate in control samples.

Combining the prevalence estimates of cannabis-positive driving and the
low (but likely positive) risks, cannabis impaired driving as a whole is es-
timated to have a minor impact on the total number of crashes – with the
mean attributable risk fraction in the majority of study samples well below
1% and most likely below 2.5%. While this indicates that the overall public
health impact of cannabis impaired driving is minor relative to that of al-
cohol-impaired driving, it does not imply that cannabis impaired driving is
safe, and the low average is consistent with the presence of a smaller group
of high-dose drivers with more substantially raised risks (Rogeberg and
Elvik, 2016b). An improved understanding of how dose-response effects
affect the crash risks of cannabis impaired driving, and how this risk var-
iation can be identified using road-side tests or THC “breathalyzers” remains
a priority.
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