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OLS with Multiple
High Dimensional Category Variables

Simen Gaure1,2

Abstract

A new algorithm is proposed for OLS estimation of linear models with mul-

tiple high-dimensional category variables. It is a generalization of the within

transformation to arbitrary number of category variables. The approach, unlike

other fast methods for solving such problems, provides a covariance matrix for

the remaining coefficients. The article also sets out a method for solving the

resulting sparse system, and the new scheme is shown, by some examples, to

be comparable in computational efficiency to other fast methods. The method

is also useful for transforming away groups of pure control dummies. A paral-

lelized implementation of the proposed method has been made available as an

R-package lfe on CRAN.

Keywords: Alternating Projections, Kaczmarz Method, Two-Way Fixed

Effects, Multiple Fixed Effects, High Dimensional Category Variables, Panel

Data

1. Introduction

We consider OLS estimation of models of the form

y = Xβ +Dα+ ε, (1)

Email address: Simen.Gaure@frisch.uio.no (Simen Gaure)
URL: http://www.frisch.uio.no (Simen Gaure)

1Ragnar Frisch Centre for Economic Research, Gaustadalléen 21, N-0349 Oslo, Norway.
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where y is a response vector of length n, X is an n × k-matrix of covariates

with corresponding parameters β, D is an n × g-matrix of dummies with cor-

responding parameters α, and ε is a normally distributed stochastic term. D

is assumed to arise from dummy-encoding of one or more category variables,

and it is assumed that each of these e category variables have a large number

of different values (large as in 105–107).

That is, D is a block matrix, D =
[
D1 D2 · · · De

]
. The entries of each

Di consists of 0 and 1, with 1 non-zero entry per row. Hence, the columns of

each Di are pairwise orthogonal. In general, however, Di is not orthogonal to

Dj for i 6= j. We also assume that k is reasonably small, and that the system

without dummies is therefore manageable.

Models like this have been used to analyze panel data in the econometrics

literature, e.g. in Abowd et al. (1999), which studies wage as an outcome y,

and where a dummy variable is introduced for each individual (D1), as well

as for each firm (D2). As the individuals move between different firms, it is

not a nested model. The dummy modelling is done to account for arbitrarily

distributed time-constant unobserved heterogeneity, both among employees and

among firms. In this setting, what is studied is the correlation between the

firm effect and the individual effect on the wage. Other applications of similar

models can be found in (Aaronson and Barrow, 2007; Abowd et al., 2006; Bazzoli

et al., 2008; Carneiro et al., 2012; Cornelißen and Hübler, 2011; Gibbons et al.,

2010; Jacob and Lefgren, 2008), e.g. with school and teacher effects, worker

and area effects, or hospital and doctor effects. Because the datasets, sourced

from government registers containing hundreds of thousands, or even millions,

of observations, are so large, there is a very large number of dummies, requiring

special algorithms for their estimation.

McCaffrey et al. (2010) compares some estimation schemes for these models.

We present a new estimation algorithm for such models. In an appendix, we

present some test runs on both simulated and real datasets, comparing the

suggested method to a2reg by Ouazad (2008), the fastest one in McCaffrey

et al. (2010). Our method has the following properties.
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• For the system (1), β̂ is found without having to find α̂, i.e. large matrices

are avoided.

• Since the method is a direct generalization of the within-groups estimator,

utilizing the Frisch-Waugh-Lovell theorem, it yields a covariance matrix

for β̂, which in the case of e = 2 is the same as if (1) had been solved

directly with standard OLS. In the case e > 2, the covariance matrix may

be slightly up-scaled. The other methods of McCaffrey et al. (2010) lack

this property: either no standard errors are provided, or they need to be

computed for both α̂ and β̂ requiring the use of various time-consuming

methods. In the approach proposed here, however, it is possible to have a

number of pure control dummies in D which are simply projected out of

the system and not estimated, and we still get good estimates for β̂. An

example can be found in Markussen and Røed (2012).

• α̂ may optionally be retrieved, but identification of coefficients in α̂ in

the case e > 2 hinges on the ability of the researcher to find enough

estimable functions suitable for the problem at hand. The estimation

scheme provides a test for estimability. Some examples are given in the

appendix.

• The method is comparable in speed to a2reg, sometimes faster and some-

times slower.

In Andrews et al. (2008) it is shown that the above-mentioned correlation

is negatively biased; the present approach does not concern itself with the ap-

propriateness of those models to the solution of particular problems, nor with

their statistical properties. What it does concern itself with, however, is the

OLS estimation of the parameter vectors β and α only.

Although we occasionally refer to the firm-employee application mentioned

above, it is only because it gives us convenient names for the category variables.

While the main application of our results is in the analysis of panel data, the

results are general in the sense that they do not depend on any particular appli-
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cation; any set of dummies D, be it age-groups, hometown, school, workplace,

may be transformed out of equation (1). The approach does not even depend

on whether the underlying data are panel data; we are not concerned with time-

constant and time-varying covariates, nor, indeed, time in general, just with sets

of possibly high-dimensional category variables in OLS estimation.

Remark 1.1. In the econometrics literature, having a time-constant dummy

for each individual is referred to as having individual fixed effects. Thus, to

(some) econometricians, the α above is the fixed effects, whereas β is not. To

statisticians, this use of the phrase “fixed effect” is confusing, as the β is also

a fixed effect. Below, we use the phrase “fixed effect” in the econometrician’s

sense. I apologize to statisticians who might (rightfully) find this confusing, but

it is done to (hopefully) make the text more accessible to econometricians.

A common strategy when working with a single category variable, is to centre

the covariates and response on the group means, and do OLS on the projected

system (Wooldridge, 2002, Section 10.5). Such centring consists of computing,

for each category, e.g. individual, the mean of the covariate. The mean is then

subtracted from the covariate’s values in the category. Thus, time-constant

effects are removed, and only time-varying effects within each category matter

in the estimation. That is, the category effect serves to replace all time-constant

effects.

Centring on the means is also referred to as “demeaning”, “time demean-

ing”, “fixed effects transformation”, “within transformation”, “within groups

transformation” or “sweeping out the fixed effects”. It seems to be common

knowledge that sweeping out more than one category variable may not be done

by centring on the group means, or by other simple transformations of the data,

see e.g. (Abowd et al., 1999, p. 266), (Andrews et al., 2008, p. 676), (Cornelißen

and Hübler, 2011, p. 476), and (Margolis and Salvanes, 2001, p. 19). Other esti-

mation methods have therefore been developed to meet this challenge. Several

authors, (e.g., Abowd et al., 2002; Cornelißen, 2008; Ouazad, 2008; Schmieder,

2009), have implemented procedures for the estimation of such models.
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The main contribution of this work is Remark 3.2. It is indeed possible to

sweep out multiple fixed effects, due to the Frisch-Waugh-Lovell theorem and

certain other, relatively old results (von Neumann, 1949, Lemma 22, p.475),

and (Halperin, 1962, Theorem 1)3, now known as The Method of Alternating

Projections. This leaves us with two systems, one of which is manageable with

off-the-shelf OLS software; the other, a large, sparse system for the fixed ef-

fects. As a bonus we get a covariance matrix for the small system, the βs,

a property which is lacking in many of the other estimation schemes. In Al-

gorithm 6.1 and the discussion preceding it, we also suggest a method, the

Kaczmarz method (Kaczmarz, 1937), for solving the sparse system.

To the author’s knowledge, both the Kaczmarz method and Halperin’s method

of alternating projections are little known in the econometric and statistical lit-

erature, even though they sit very nicely with the Frisch-Waugh-Lovell theorem.

There is an application of Halperin’s theorem to the proof of convergence of the

backfitting algorithm in (Ansley and Kohn, 1994), and the Kaczmarz method is

actively in use in medical imaging, under the name “Algebraic Reconstruction

Technique” (ART), (Andersen and Kak, 1984; Gordon et al., 1970; Herman,

2009; Hudson and Larkin, 1994).

To get an intuitive graphical view of these methods, and why they matter

when studying linear systems, recall that a line, a plane, hyperplane or linear

subspace is merely the solution set of one or more linear equations. The in-

tersection of such subspaces is the simultaneous solution of the corresponding

sets of equations. Consider e.g. two intersecting lines in Euclidean plane. To

find the intersection, we can start at a point anywhere in the plane, project

it orthogonally onto one of the lines, project it again onto the other line, then

back to the first line, and so on. We zigzag towards the intersection. Clearly,

if the lines are orthogonal, we will reach the intersection in just two steps. If

the lines intersect at an acute angle, more steps will be needed to get close.

The Kaczmarz method is the generalization of this process to a finite set of

3Halperin’s article is available here: http://bit.ly/HJ067o
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hyperplanes in a high dimensional Euclidean space. von Neumann’s lemma is

the generalization to two arbitrary subspaces of a Banach space. Halperin’s

theorem generalizes this further, to a finite number of subspaces.

The method presented falls in the broad category of sparse methods. Other

recent advances in sparse methods may be found in Lee and Huang (2013);

Vidaurre et al. (2013), whereas a method for choosing between different models

may be found in Ueki and Kawasaki (2013).

2. Preliminaries

In (1), we assume that the model is well specified in the sense that the only

multicollinearities in the system occur in D. Some of these multicollinearities

are due to the fact that we have constructed D from a full set of dummies, with

no references. Others may be due to spurious relations between the category

variables. We return to the mathematical details, once we have introduced some

notation.

The task is to compute the OLS estimates β̂ and α̂ of the parameter vectors

β and α in (1). In particular we look at the case e = 2, corresponding to

two category variables, e.g. “firm” and “employee” as in (Abowd et al., 1999;

Andrews et al., 2008).

We now derive the Frisch-Waugh-Lovell theorem. To do this, we consider for

the time being a full-rank version D of D. I.e. we remove just enough linearly

dependent columns from D to get a new full-rank matrix D with the same

range and with rank(D) = rank(D). That is, D′D is invertible. The manner in

which linearly dependent columns are removed is not important for most of the

results of this section, since the results are in terms of the range projection of

D, which only depends on the column space. We also remove the corresponding

coordinates from α to get an αr.

We will have occasion to use several of the intermediate formulae later. An

identity matrix of the appropriate size will generally be denoted by I. The

transpose of any matrix M is denoted by M ′.
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The normal equations of system (1), with D and αr areX ′X X ′D

D′X D′D

 β̂
α̂r

 =

X ′
D′

 y. (2)

We recall some standard facts about these. We may write them as two rows

X ′Xβ̂ +X ′Dα̂r = X ′y (3)

D′Xβ̂ +D′Dα̂r = D′y (4)

and do Gaussian elimination of the α̂r-term in the last row to get

X ′(I −D(D′D)−1D′)Xβ̂ = X ′(I −D(D′D)−1D′)y. (5)

Now, let P = I −D(D′D)−1D′ and note that P = P 2 = P ′ is a projection.

Indeed, P is the projection on the orthogonal complement of the column space

of D. Rewriting equation (5) with P , we get

(PX)′(PX)β̂ = (PX)′Py,

which shows that β̂ is the OLS solution of the projected system

Py = PXβ + Pε. (6)

We do not need α̂, then, to find β̂. Moreover, by multiplying through (4) with

D(D′D)−1 and noting that D(D′D)−1D′ = I − P , we get

(I − P )Xβ̂ +Dα̂r = (I − P )y, (7)

which may be reordered as

y − (Xβ̂ +Dα̂r) = Py − PXβ̂,

showing that the residuals of the projected system (6) are the same as the

residuals of the full system (1).

In practice, it sometimes happens that β̂ is not uniquely determined by (6).

This is the same problem that affects ordinary within-groups models with e = 1,

e.g. covariates in X which are constant for individuals. We do not treat this
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specification problem here. That is, we assume PX is full rank. Similarly, we

assume that QD is full rank, where Q is the projection onto the orthogonal

complement of the range of X. That is, loosely speaking, X should not explain

any category in D fully, nor should D explain any of the variables in X fully.

In other words, barring those we have temporarily removed from D, the system

should be free of other multicollinearities.

Now, recall that to find the covariance matrix of β̂ and α̂ in system (1), we

invert the matrix in (2) and multiply with the residual sum of squares divided

by the degrees of freedom. Also, recall from general matrix theory the block

inversion formulaA B

C E

−1 =

 (A−BE−1C)−1 −A−1B(E − CA−1B)−1

−E−1C(A−BE−1C)−1 (E − CA−1B)−1

 ,
which is easily shown to hold when the quantities in question are invertible. We

use this on the matrix in (2). After some simplification, we getX ′X X ′D

D′X D′D

−1 =

 (X ′PX)−1 −(X ′X)−1X ′D(D′QD)−1

−(D′D)−1D′X(X ′PX)−1 (D′QD)−1

 ,
so that the upper left entry of the inverse, i.e. the part that goes into the

covariance matrix for β̂, is (X ′PX)−1. Now, (X ′PX)−1 is also the inverse of

the corresponding matrix in system (6).

Remark 2.1. Getting the same matrix, and the same residuals, we can perform

an OLS on system (6) in the normal way, adjusting only the degrees of freedom

according to the number of parameters projected out by P , to find the β̂ part

of the covariance matrix for system (1).

The above result is known as the Frisch-Waugh-Lovell theorem. It is a

standard way to eliminate the fixed effects from the equation in the case e =

1, i.e. with a single fixed effect. In this case, the projection P is the within

transformation.

Remark 2.2. Note that P is the projection onto R(D)⊥, where R(D) denotes

the range of D, i.e. the column space, and ⊥ denotes orthogonal complement.
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We have R(D) = R(D) since we have only removed linearly dependent columns,

so P and β̂ do not depend on the specifics of how we produce D from D. Nor

does the matrix (X ′PX)−1.

3. Projecting the system

Although (6) shows us how to eliminate the fixed effects for arbitrary e ≥ 1,

and we even have an explicit matrix formula for P , due to size limitations with

large n ≈ 107, it is impractical to handle the n×n projection matrix P directly.

However, we do not really need to find the matrix P ; what we do need to do is

compute Py and PX.

To this end, for each i = 1..e let Pi be the projection onto the orthogonal

complement of the range of Di, R(Di)
⊥. Pi is the within-groups transformation

for category variable i. We have

R(D)⊥ = R(D1)⊥ ∩ R(D2)⊥ ∩ · · · ∩ R(De)
⊥, (8)

thus, in terms of projections,

P = P1 ∧ P2 ∧ · · · ∧ Pe. (9)

To see that (8) holds, assume η is a vector on the left hand side, i.e. η ∈

R(D)⊥. Then η is orthogonal to the column space of D, thus to every column

of D. Since the columns of D consist of the columns of D1, . . . , De, η must be

orthogonal to each R(Di) for i = 1..e; we therefore have η ∈ R(Di)
⊥, and, in

consequence, η is in the intersection on the right hand side. Conversely, assume

that for each i = 1..e, we have η ∈ R(Di)
⊥, i.e. η is in the intersection on the

right hand side. For each i, η is orthogonal to R(Di), and thus to every column

of Di. Again, since the columns of D consist of columns from the Dis, η is

orthogonal to every column of D, hence η ∈ R(D)⊥. Ergo, equality holds in (8).

By using (Halperin, 1962, Theorem 1) on (9), we now have

P = lim
n→∞

(P1P2 · · ·Pe)
n. (10)
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The convergence holds in the strong operator topology, i.e. pointwise on vectors,

although for finite dimension, it is equivalent to both the weak and the uniform

operator topology.

This shows that the following algorithm converges.

Algorithm 3.1 (Method of Alternating Projections). Let v be a vector (typ-

ically a column of X or y). The following algorithm converges to Pv. It is a

direct generalization of the within-groups transformation (i.e. the case e = 1).

(1) Pick a tolerance, an ε > 0, e.g. ε = 10−9. Let v0 = v, and i = 0.

(2) Let z0 = vi. For j = 1..e, form zj by subtracting the group means of the

groups in Dj from zj−1. I.e. zj = Pjzj−1.

(3) Let vi+1 = ze. If ‖vi+1 − vi‖ < ε, terminate with the vector vi+1 as an

approximation to Pv. Otherwise, increase i by 1. Go to step (2).

Remark 3.2. By using Algorithm 3.1 on y and the columns of X, we find Py

and PX, and the estimation of β̂ from (6) is therefore manageable.

Example 3.3. In the case with e = 2, i.e. with two fixed effects like “firm” and

“individual”, Algorithm 3.1 amounts to repeating the process of centring on the

firm means, followed by centring on the individual means, until the vector no

longer changes.

3.1. Convergence rate

The rate of convergence for the method of alternating projections is analyzed

in Deutsch and Hundal (1997), though by general concepts for which the author

has not found an intuitive description in terms of the covariates used to construct

D in a typical panel data model. For the case e = 2, (Aronszajn, 1950), cited

in (Deutsch and Hundal, 1997, Corollary 2.9), has an estimate

‖(P1P2)n − P‖ ≤ cos2n−1(R(D1)⊥,R(D2)⊥), (11)

where the function cos denotes the cosine of the (complementary) angle between

subspaces. The inequality (11) was later shown in (Kayalar and Weinert, 1988,
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Theorem 2) to be an equality. The quantity on the right hand side is strictly

smaller than 1 in finite dimensional spaces (Deutsch and Hundal, 1997, Lemma

2.3(3)). Thus, we have linear convergence, but the rate varies with the structure

of D. In (Deutsch and Hundal, 1997, Theorem 2.7 and Section 3), the case e > 2

is also handled, but the convergence rate is more complicated.

4. Finding the fixed effects

Having found β̂ as per Remark 3.2, we now look at the problem of finding

α̂. Recall from (4) that

D′Dα̂r = D′ρ, (12)

where ρ = y − Xβ̂ are the residuals for the original system with dummies

omitted.

In the special case with a single category variable (e = 1), the columns of

D are orthogonal, and D′D is therefore diagonal; α̂r is simply the group means

of the residuals ρ. This is the within-groups estimator. If e > 1, D′D is not

diagonal, though it is typically quite sparse, and the pedestrian approach is

to apply a good sparse solver on (12), such as those evaluated in Gould et al.

(2007). However, there is another avenue which has proven useful.

4.1. The Kaczmarz method

We rewrite (7) as

Dα̂r = (I − P )(y −Xβ̂) = (y −Xβ̂)− (Py − PXβ̂) (13)

where the right hand side is readily computed when we have β̂. Now, although

the derivation of (7) assumed that linearly dependent columns of D had been

removed, we may consider the equation with the original rank-deficient D. As

noted in Remark 2.2, the right hand side will be the same, and since D and

D have the same range, the equation with D will still have a solution. I.e. we

consider the equation

Dα̂ = (y −Xβ̂)− (Py − PXβ̂). (14)
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where α̂ is only identified up to translation by the null-space of D. We resolve

the ambiguity by applying an estimable function to the solution.

To find a solution to (14), we can apply the Kaczmarz method, (Kaczmarz,

1937). Following the method, we can view each equation in system (14) as

defining a hyperplane in Rg. The intersection of all the hyperplanes is the

solution set of the system. The Kaczmarz method is a variant of the method of

alternating projections, where we start with a vector and successively project it

onto each hyperplane. The process is repeated until the vector stops changing.

This will have brought us to the intersection, i.e. a solution to (14).

In our case, the projection onto a hyperplane is very simple. Remember that

each row of D contains exactly e 1’s; the other entries are zero. We write row i

of system (14), with x instead of α̂, as 〈di, x〉 = bi, where di is row i of D, bi is

the i’th coordinate of the right hand side, and 〈·, ·〉 denotes the Euclidean inner

product. The projection onto the solution set of row i is

x 7→ x− (〈di, x〉 − bi)di/‖di‖2, (15)

which is easy to compute; ‖di‖2 = e for every i, and the inner product is merely

a sum of e of the coordinates of x. In other words, the update to x requires

minimal computation.

Solving (14) consists of starting with e.g. x = 0, and applying the projections

(15), for i = 1..n in succession, and repeating this process until the change in x

is smaller than some tolerance. A process entirely analogous to Algorithm 3.1,

with the e Pis replaced by the n projections in (15). It is noted in (Deutsch and

Hundal, 1997, Section 4) that their convergence rate results also cover affine

sets, not only subspaces.

Remark 4.1. It is easily seen that consecutive duplicate rows in D may be

ignored, since the projection in (15) is idempotent.

When we have found a solution γ of (14), we must apply an estimable

function to γ, to obtain unique, meaningful coefficients. To see that this works,

recall that an estimable function is a matrix operator F whose row space is
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contained in the row space of D. Denote the null-space of a matrix M by

N(M). From matrix theory, the row-space of M is the orthogonal complement

N(M)⊥. Thus, we have N(F )⊥ ⊂ N(D)⊥, or, equivalently, N(D) ⊂ N(F ).

Hence, if γ1 and γ2 are two arbitrary solutions of (14), i.e. Dγ1 = Dγ2, we have

D(γ1 − γ2) = 0, thus F (γ1 − γ2) = 0, so Fγ1 = Fγ2. That is, the value of the

estimable function does not depend on the particular solution of (14).

5. Identification with two fixed effects

Since the method described above is typically used with category variables

with many different values, there is a real chance of spurious relations occurring

between them, resulting in non-obvious rank-deficiency in D, and, it follows, an

identification problem for α̂.

To be complete, we now recall a known identification result for the case e = 2.

This is needed to find estimable functions. Abowd et al. (1999) has analyzed

this problem in the case with two dummy-groups (firms and individuals). The

problem was also treated much earlier in a different setting, by Eccleston and

Hedayat (1974), and the references cited therein.

In Abowd et al.’s approach, an undirected bipartite graph G is constructed

in which each vertex consists of a firm or an employee. A firm and an employee

are adjacent if and only if the employee has worked for the firm. There are

no more edges in the graph. I.e. D′, with duplicate columns omitted, is the

(vertex-edge) incidence matrix of the graph.

They then analyze identifiability in terms of the connected components (or

“mobility groups”) of the graph G, and show that it is sufficient to have a

reference dummy in each of the connected components, (see Abowd et al., 2002,

Appendix 1). That is, we have the theorem

Theorem 5.1 (Various authors). If e = 2, the rank deficiency of D, hence of

D′D, equals the number of connected components of the graph G

Proof. To put this result in the context of spectral graph theory, we provide

the following reference. The matrix D′ may be viewed as the incidence ma-
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trix of the graph G; D′D is then the signless Laplacian of G. Moreover, the

graph is bipartite, with “firms” in one partition, “employees” in the other. By

(Cvetković et al., 2007, Corollary 2.2), the multiplicity of eigenvalue 0, i.e. the

rank deficiency, is the number of connected components.

Remark 5.2. For general e, we get an e-partite, e-uniform hypergraph. We are

not aware of similar general results for such graphs. However, the case e = 3 has

been analyzed in Godolphin and Godolphin (2001), who offer a procedure for

finding the estimable functions in terms of staircase partitions; nevertheless it is

not as simple as finding graph theoretic connected components. The spectrum

of the signless Laplacian is also an active field of research in graph theory, see

Cvetković and Simić (2010) for a survey.

6. Summary

We summarize the above results in an algorithm.

Algorithm 6.1. To find OLS estimates β̂ and α̂ for model (1) we proceed in

the following manner.

(1) Centre ȳ = Py and X̄ = PX with Algorithm 3.1

(2) Perform an OLS on

ȳ = X̄β + ε.

The result of the estimation is β̂. The covariance matrix must be adjusted,

taking into account the number of eliminated parameters in the degrees of

freedom, as in Remark 2.1.

(3) Compute the quantity B = (y − Xβ̂) − (ȳ − X̄β̂). Apply the Kaczmarz

method to find a solution γ of the equation Dγ = B, as in (14).

(4) Apply an estimable function to γ, suitable to the problem at hand, to get

meaningful estimates α̂.
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In step (2), the number of eliminated parameters is the rank of D. I.e., if

the OLS in step (2) reports the covariance matrix Σ, and d degrees of freedom,

the true degrees of freedom are d − rankD, so that d(d − rankD)−1Σ is the

right covariance matrix for β̂. For e = 2 we can use Theorem 5.1 to compute

the rank-deficiency, and thus the rank of D.

There is no easy way to compute the exact degrees of freedom for e > 2,

although the rank-deficiency of D is at least e − 1; if we take this to be the

true value, we will be over-estimating the standard errors, which is better than

nothing. The sample is typically very large, also compared to the number of

dummies, so the relative error in degrees of freedom will typically be small.

Alternatively, one may compute the rank-deficiency of D or D′D by picking a

small ε > 0, do a sparse, pivoted Cholesky decomposition of D′D + εI, and

count small pivots, though it is likely to be very time-consuming due to the size

of D′D.

In step (4), finding an estimable function in the case e = 2, is guided by

Theorem 5.1. There is a discussion of this in McCaffrey et al. (2010). To be

brief, a difference of two “firms”, or two “individuals”, in the same component

is estimable. Likewise, the sum of a “firm” and an “individual”. So, if we pick

a reference “individual”, we may subtract its value from all the “individuals”,

and add it to all the “firms”, in each component. We can also combine this with

subtracting the mean of the “firms” from all the “firms”, and use the mean as a

common intercept, still for each component. Coefficients from different compo-

nents are not directly comparable. For the case e > 2 no intuitive identification

results are known, and thus no easy method is currently known for finding an

intuitive estimable function which allows coefficients to be interpreted as partial

effects. Having said that, the researcher may know of them in particular cases.

Remark 6.2. Note that a candidate estimable function may be tested for non-

estimability by running the Kaczmarz method with two randomly chosen initial

vectors to get two different solutions to (14). If the function evaluates to two

different values, it is not estimable. Since the Kaczmarz step computes the
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projection of the initial value on the solution space, two different initial values

could possibly produce identical solutions even though the function is not es-

timable. Say we have a candidate F for an estimable function which actually is

not estimable. We have an initial vector 0 which yields the solution ξ0 of (14)

and another initial vector ν which yields the solution ξ. If ξ − ξ0 ∈ N(F ) we

will falsely conclude that the function is estimable. Now, ξ0 and ξ are solutions

of (14), so that ξ − ξ0 ∈ N(D). Since F is not estimable, we have by definition,

N(D) 6⊂ N(F ), whereas we have ξ − ξ0 ∈ N(D) ∩ N(F ). That is, ξ lives in a

lower-dimensional space than N(D), i.e. a set of Lebesgue-measure zero in the

solution set of (14). Our test will therefore fail on a set of measure zero.

For the case e = 2, if standard errors for α̂ are needed, one may bootstrap

with Algorithm 6.1. For the case e > 2, without an estimable function, it would

not be meaningful to bootstrap or otherwise estimate standard errors.

Remark 6.3. None of the steps in Algorithm 6.1 are particularly memory-

consuming. However, while centring in step (1) can be done in place, the centred

vectors X̄ and ȳ require a copy since we need the original X and y in step (3).

The Kaczmarz method in step (3) also consists of operations on single vectors;

no large matrices are involved.

Appendix A. Efficiency compared with other methods

The author has made an implementation of Algorithm 6.1 available on “cran”

as an R-package lfe (Gaure, 2011). It is a straightforward implementation, i.e.

we have not tried to adapt any of the available alternating projections accel-

eration schemes (e.g., Andersen and Kak, 1984; Gearhart and Koshy, 1989;

Mart́ınez and Sampaio, 1986; Strohmer and Vershynin, 2009), nor have we per-

formed extensive machine-related optimization.

The method of Strohmer and Vershynin (2009) works by assigning a proba-

bility to each projection, proportional to the ‖di‖ of equation (15), and drawing

projections from this distribution rather than applying them in sequence. In

16



our case, all the probabilities will be the same, and the method will reduce to

random shuffling of the equations, a point we discuss below. The method of An-

dersen and Kak (1984) is geared towards image reconstruction with low visual

noise, and make use of the fact that medical image features often are convex.

It is unclear to the author whether this could be translated to the problem at

hand. The method of Gearhart and Koshy (1989) is a line search method which

may well be applicable to the problem at hand, both the centring and the Kacz-

marz step, but it has not been implemented in lfe. The method of Mart́ınez

and Sampaio (1986) is a parallel implementation of the Kaczmarz method. It

may be applicable to the Kaczmarz step of lfe; the centring is already parallel.

The current implementation in lfe suffers from somewhat low floating point

ops per cycle ratio due to out-of-cache computations. It has this in common

with a lot of other software, including Stata. It could perhaps be improved

by interleaving the vectors to be centred, but this would incur additional book-

keeping overheads, and the efficiency of such partakings is prone to be dependent

on memory and CPU architecture.

McCaffrey et al. (2010) has compared the various Stata programs for es-

timating the models in question. We have compared the speed of the fastest

method there, a Stata program a2reg (Ouazad, 2008), based on the precondi-

tioned conjugate gradient approach of Abowd et al. (2002), to the R-package

lfe.

The endeavour is not a direct comparison of the algorithms, since implemen-

tation details, as well as specifics of the computing contraption, also matter. Nor

is it a comprehensive test: the rate of convergence may vary with the structure

of the data, according to (11), but it does show that the method presented here

is comparable to other generally available methods.

Ideally, a more comprehensive test should be made, but the problem with

comprehensive tests on real datasets of this size and form is that the datasets

are typically sourced from various public registries and therefore subject to data

protection regulations, or not publicly available for commercial reasons. The

three relevant datasets in McCaffrey et al. (2010) are of this type. The efficiency
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of sparse solvers typically depends on the structure of the underlying density

pattern/graph which may be very varied. As an example, the comparison in

Gould et al. (2007) uses a total of 149 different matrices. The author has not

managed to obtain such a sizeable number of datasets. For the same reason,

it is also possible that a2reg is not the generally fastest method of the ones

compared in McCaffrey et al. (2010).

Because the present method splits the system into separate parts for β̂ and

α̂, lfe is able to provide standard errors for the β̂ coefficients, whereas a2reg

is not. Standard errors for α̂ must still be obtained by bootstrapping, though.

According to McCaffrey et al. (2010), the other Stata programs providing stan-

dard errors are considerably slower than a2reg for the large dataset there by a

factor of ≈ 40.

Simulated datasets

We have created some simple, simulated job-change panel datasets with two

normally distributed covariates x1 and x2. Individuals and firms are assigned

constant effects at random. Every individual is observed for 15 observation

periods, with a probability of 10% per period of entering a new firm. To obtain

variation in firm sizes, the firms are assigned a probability of being chosen

drawn from a χ2
10-distribution. We then create an outcome variable as a linear

combination of the two covariates and the individual and firm effects, with a

normally distributed stochastic term ε. I.e., we have

yitj = 0.5x1it + 0.25x2it + λi + γj + εitj ,

where yitj is the outcome for individual i who is in firm j at time t, the xs are

the above-mentioned covariates, λi is the individual fixed effect for individual i,

and γj is the firm fixed effect for firm j. In the model setup, the dummies for

the λis and γjs enter the matrix D of model (1), whereas the x-covariates enter

the matrix X.

To complicate matters further, and to avoid having balanced datasets, i.e.

every individual observed in every period, we have simply taken a 70% sample of
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all observations, from which we extracted the largest connected firm/employee

component. We created different datasets in the following way.

small e = 2. We created a “small” dataset of ≈ 300, 000 individuals, 30,000

different firms, and approximately 3.1 million observations.

big e = 2. A “big” dataset contains approximately 4 million individuals,

400,000 firms, with approximately 42 million observations, comparable in

size to the labour market of a small country.

wide e = 2. In addition, we also put together a “wide” dataset, a modification

of the “small” one, but with a “year-effect” thrown in, i.e. an effect for

each of the 15 observation periods, with accompanying dummies in X.

shoe e = 3. To test the speed of lfe in the case e = 3, we have also created a

variation of the “small” dataset where the individuals change their shoes

with a probability of 10% per observation period. There are 4,000 types of

shoes to choose from, each with their own effect on the wage y. Now this

is admittedly an unrealistic concoction, and there is little reason to believe

that shoe effects would even have the same sign for a sewage worker and

an accountant. The shoe dummies enter the D matrix in the estimation.

This dataset is referred to as “shoe” below. a2reg does not support e = 3,

so a comparison is not possible unless the 4000 shoe dummies are put into

the X matrix.

Real datasets

We also have some real datasets. One dataset is from Markussen and Røed

(2012), studying peer group effects on social insurance dependency. There are

approximately 1 million individuals in this set, observed annually for 16 years,

resulting in 16.4 million observations all told. This dataset allows for various

dummy structures. All of them use a dummy variable for each individual. The

variation is what constitutes the other dummy groups. We have chosen the

following variants.
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mr1 e = 2. There is one other dummy group, the interaction between gender,

observation year, cohort, education and region. It contains approximately

1 million different values. There are 5 covariates in the X-matrix.

mr2 e = 2. The dummy group is the interaction between gender, year, cohort

and education. It has 20,311 different values and there are 6 covariates in

the X-matrix.

mr3 e = 5. There are four additional dummy groups. Interactions between

region and year (1,321 values), between cohort and year(271), gender and

age(29), gender and year(16). There is 1 covariate in the X-matrix.

mr4 e = 4. This is the same as “mr3”, but the gender-age interaction has been

placed in the X-matrix. Thus, we have e = 4, and there are 29 covariates,

using one of the gender-age dummies as a reference.

mr5 e = 4. This is the same as “mr3”, but the gender-year interaction has been

placed in the X-matrix. This gives us e = 4, and there are 16 covariates.

bd1 e = 2. This is a different in-house dataset, on wage-formation, with no

published results yet. There are approximately 2.7 million individual dum-

mies, 290,000 firm dummies, with 25 million observations. There are 18

covariates in the X-matrix. We have extracted the largest connected com-

ponent of this dataset.

bd2 e = 2. Same type of dataset as “bd1”, but a different set of individuals,

and, consequently, a different sparsity pattern. There are approximately

25 million observations, with 2.7 million individuals and ≈ 310, 000 firms.

There are 9 covariates in the X-matrix, and 17,558 connected compo-

nents/mobility groups.

Comparison

The comparison has been conducted on a computer running CentOS 5.2, a

Dell Poweredge M610 equipped with 48 GiB of 1.33 GHz memory, and 2 hexa-

core Intel Xeon X5650 cpus at 2.67 GHz, with an L3-cache of 12 MiB each,
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part of the “Titan III” high performance computing facility at the University of

Oslo. Stata version 11.0 was used with a2reg; R-version 2.11.1 was used with

lfe. R, and lfe, was compiled with the GNU compiler suite, version 4.1.2. The

parallel version of the AMD provided blas-library ACML 4.4.0 was linked into R,

though it was only used for solving the projected system (6).

lfe can make use of all the cores in the computer, i.e. it can centre the

vectors in parallel. There is nothing to gain from using more cores than there

are vectors to centre. We have run lfe on a single core, on 3 cores, and 8 cores.

We left the thread distribution over the cores to the default NUMA policy in

CentOS. We did not try a2reg with the multicore-enabled Stata/MP version,

and do not know whether it would benefit from this.

The estimates of the “big” dataset, from a2reg and lfe, of β̂, and of α̂

after applying the same estimable function, corresponding to a single individual

reference, were almost equal. All estimated effects were between -5 and 13. An

elaboration of “almost equal” is necessary. As both methods purport to solve

the normal equations, if only to a tolerance, it is meaningful to measure the

differences directly.

The Pearson’s correlation between individual effects from the two methods,

exceeded 1 − 10−10. This held true for the firm effects as well. The maximum

difference (`∞-distance) between the β̂s was 10−7. The differences between

the α̂s were somewhat larger. The `∞-distance for both firm and individual

vectors, was 0.005, the mean difference (dimension-normalized `1-distance) was

≈ 10−6, with a standard deviation of ≈ 10−5. The Euclidean (`2) distance

between the firm vectors was 0.008; between the individuals, 0.016. Eight of

the firm-estimates, and 26 of the individual estimates differed by more than

10−3. Differences exceeding 10−4 were found in 152 of the firms, and 390 of

the individuals. For most practical purposes, the estimates from lfe and a2reg

may be considered equal.

The timings in table A.1 are wall-clock timings in seconds for the estimation

only, excluding reading and writing of files. Irrelevant cells are filled with “-”,

i.e. a2reg with e > 2, and lfe with more cores than vectors to centre. Variation
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in timing over multiple runs on the same dataset is within 10% for all cases.

The reported timings are from a typical run.

Table A.1: Comparison of execution times

Dataset n k e a2reg lfe(1 core) lfe(3) lfe(8)

small 3.1M 2 2 151 72( 8) 56( 8) -

wide 3.1M 16 2 383 235( 7) 108( 6) 78(6)

big 42M 2 2 3168 1980(140) 1186(148) -

shoe 3.1M 2 3 - 104( 30) 90( 29) -

mr1 16.4M 5 2 1159 470 ( ??) 280 ( ??) 228 ( ??)

mr2 16.4M 6 2 1435 667(216) 498(215) 430(217)

mr3 16.4M 1 5 - 49745 ( ??) 31779 ( ??) -

mr4 16.4M 29 4 - 6508(143) 2434(143) 1496(145)

mr5 16.4M 16 4 - 12573(884) 5947(915) 3993(923)

bd1 24.7M 18 2 3966 20660(559) 9363(552) 7515(568)

bd2 25.4M 9 2 2760 4234(133) 1833(133) 1259(132)

The figures in brackets for lfe is the time spent in the Kaczmarz step.

Discussion of comparison

The results are mixed. For some datasets, lfe outperforms a2reg, for other

datasets it’s the other way around. In particular for the dataset “bd1”, and,

importantly, the lfe-figures for the “mr1” and “mr3” datasets do not include

numbers for the Kaczmarz step, since the step failed to complete in 20 hours.

The figures for these two datasets are for the centring and projected OLS only.

This, it should be noted, is an extreme case. The dataset was not constructed

for the purpose of estimating parameters for these dummies; they are simply

control variables. However, it does illustrate a potential shortfall of the Kacz-

marz method. Also, the difference between “mr3”, “mr4” and “mr5”, which

have identical normal equations but with a different one of the dummy sets of

“mr3” moved into the X-matrix in “mr4” and “mr5”, is striking. Similarly, the
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difference between the lfe-timings for “bd1” and “bd2”. Significantly, a2reg

does not seem to exhibit such a strong structural dependence. This shows that

not only in the theory of eq (11), but also in practice, the execution time of

both a2reg and lfe depends, possibly in inherently different ways, on the size

and the structure of the data.

Now the fact that the parallel speedup for lfe is not linear is due to Amdahl’s

law. That is to say, only the actual centring was parallelized, whereas the

projected OLS, the Kaczmarz step, and mundane bookkeeping, such as creating

a “model matrix” from the “data frame”, ran serially. The actual centring of

each of the 3 vectors in the “big” dataset on 1 core took 376, 410, and 414

seconds. On 3 cores, centring took 484 seconds. The projected OLS took,

unsurprisingly, only 8 seconds. So, centring, projected OLS, and the Kaczmarz

step, add up to 640 seconds, leaving 546 seconds for various bookkeeping jobs.

Since centring is such a simple operation, and the vector length exceeds the

cache size, parallel centring over many cores, in the current implementation, is

likely to exceed the total memory bandwidth, which also tends to limit parallel

efficiency.

Memory usage was higher for lfe than for a2reg, both because the algo-

rithm requires a copy of X and y, as in Remark 6.3, but also because R is a

functional programming language with some implicit copying and garbage col-

lection, requiring in effect another temporary copy of X and y, and even more.

Memory usage after reading the “big” dataset, but before starting computa-

tions, was ≈ 3 GiB in Stata, and 6 GiB in R. The Stata estimation peaked

at approximately 10 GiB total memory, whereas the R estimation peaked at

13 GiB.

A note on convergence

We have used the following, intuitively derived, modification of the conver-

gence criterion for the alternating projection methods. Let x0 be the initial

vector. Let xi = T ix0 where T is the product of projections. The change

δi = ‖xi+1 − xi‖ should be decreasing with i. We compute ci = δi/δi−1, which
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should be less than 1. We then decide to have converged when δi < ε(1 − ci)

for a pre-specified ε = 10−8, but convergence to have failed if ci ≥ 1. In-

tuitively, if ci = c were constant, then the sum of the remaining updates,∑∞
j=i δj = δi/(1 − c), should be less than ε. If the change stops shrinking,

we might arguably be running in circles due to numerical inaccuracy. Setting

ε = 0 will cause iterations to continue until machine precision has been reached.

When estimating the “wide” dataset, we have put the time dummies in the

X-matrix with a single reference, thus keeping e = 2. We also tried to put them

in the D matrix, to get e = 3, and guessed on an estimable function, equivalent

to what we obtain when removing a single time reference. This approach leads

to convergence problems in the Kaczmarz step. Although it produced the same

β̂ results (for the x1, x2), and year-effects within an `∞-distance of 10−3 of the

e = 2 case, the firm and individual effects were poorer, with `∞-distance of 1.15,

and correlation with the e = 2 case of a mere 0.985.

Having the time dummies in D, although it reduces the number of vectors

to be centred from 17 to 3, slows the convergence (per vector) of the centring

somewhat, and the Kaczmarz step dramatically, from 7 to 1,099 seconds, end-

ing in convergence failure after ≈ 30, 000 iterations. One obvious reason for the

tardiness is the absence of repeated rows in the enlarged D, as in Remark 4.1.

This could only explain a slow-down factor of up to 15, the number of obser-

vations for each individual, so it is not the full explanation. However, system

(14) has also become more redundant. Since the right hand side is numerically

determined to a tolerance only, and each projection in the Kaczmarz step is

also done with finite precision, there is a real risk that the system may become

numerically inconsistent, leading the Kaczmarz method astray.

However, it turns out that the order of the equations has a significant impact

on the convergence properties. In the test runs above, the dataset, and thus

the rows in (14), was ordered by “individual” and “year”. By ordering the rows

in (14) randomly prior to the Kaczmarz iterations, the “wide” dataset with the

time dummies in D, finished in 152 seconds on 1 core, and 17 seconds in the

Kaczmarz step. This is a simple variant of the scheme described by Strohmer
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and Vershynin (2009), and was noted in Natterer (1986).

A similar effect is present in the “shoe” dataset; ordering the observations

randomly, the time spent in the Kaczmarz step fell from 30 to 15 seconds.

We have not analyzed this phenomenon in any greater detail, and we do not

know if random shuffling would impede the Kaczmarz convergence. It did not

help with our “mr1” dataset. But our recommendation in the event of conver-

gence problems, is to order the equations in the Kaczmarz method randomly.

We should also keep in mind the words of Strohmer and Vershynin (2009):

Despite the popularity of this method, useful theoretical estimates for

its rate of convergence are still scarce.
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