print logo
­

Time and Causality: A Monte Carlo Assessment of the Timing-of-Events Approach

Sammendrag

We present new Monte Carlo evidence regarding the feasibility of separating causal-ity from selection within non-experimental interval-censored duration data, by means of the nonparametric maximum likelihood estimator (NPMLE). Key findings are: i) the NPMLE is extremely reliable, and it accurately separates the causal effects of treatment and duration dependence from sorting effects, almost regardless of the true unobserved heterogeneity distribution; ii) the NPMLE is normally distributed, and standard errors can be computed directly from the optimally selected model; and iii) unjustified restrictions on the heterogeneity distribution, e.g., in terms of a pre-specified number of support points, may cause substantial bias.

Om publikasjonen

Forfattere:

Gaure, Simen, Knut Røed and Tao Zhang

År:

2005

Serie:

Memorandum
Nummer i serie: 19

JEL:

C14, C15, C41

Nøkkelord:

NPMLE, treatment effect

Prosjekt:

1151 - Mobilisering av arbeidstilbudet

Kontakt:

knut.roed@frisch.uio.no

Finansiering:

Norges Forskningsråd

Lenke:

[PDF]